Z irconium and hafnium diene and dienyl half-sandwich complexes: synthesis, polymerization catalysis and deactivation pathways. The molecular structures of [M $\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right)\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiM} \mathrm{e}_{3}\right) 2^{-}\right.$ 1,3\}] ($\mathrm{M}=\mathrm{Zr}$ or Hf) and $\left[\mathrm{Hf}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCMeCH} \mathrm{H}^{\mathrm{B}}-\right.\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\left\{\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\right.\right.$ SiM e $\left.\left.\left._{2}\right)-\mathbf{1}, \mathbf{3}\right\}\right] \dagger$

Gerardo J iménez Pindado, M ark Thornton-Pett and M anfred Bochmann*

School of Chemistry, U niversity of L eeds, L eeds, UK L S2 9J T

Abstract

The reduction of $\left[\mathrm{M} \mathrm{Cl}_{3} \mathrm{Cp}^{\prime \prime}\right]\left[\mathrm{M}=\mathrm{Zr}\right.$ or $\left.\mathrm{Hf} ; \mathrm{Cp}^{\prime \prime}=\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiM}_{3}\right)_{2}-1,3\right]$ with sodium amalgam in the presence of dienes gave the compounds [M CI (diene) $\left.\mathrm{C} \mathrm{p}^{\prime \prime}\right]$ which are alkylated with $\mathrm{M} \mathrm{eM} \mathrm{gBr} \mathrm{or} \mathrm{RMgCl}(\mathrm{R}=$ allyl) to give [M X (diene) $\left.\mathrm{Cp}^{\prime \prime}\right]\left(\mathrm{X}=\mathrm{CH}_{3}\right.$ or $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$; diene $=2,3$-dimethylbuta-1,3-diene or isoprene). The reduction of [$\mathrm{ZrCl}\left(\mathrm{CHCM} \mathrm{eCM} \mathrm{eCH)} \mathrm{Cp}^{\prime \prime}\right.$] with an excess of $\mathrm{Na}-\mathrm{Hg}$ leads to the binuclear $\eta^{4}(5 \mathrm{e})$-butadienyl complex $[\mathrm{Zr}(\mu-$ $\left.\left.\eta^{1}: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{M} \mathrm{e}_{2}-2,3\right) \mathrm{C}^{\prime \prime}\right]_{2}$, also formed from [$\left.\mathrm{ZrMe}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{M} \mathrm{e}_{2}\right) \mathrm{C} p^{\prime \prime}\right]$ by methane elimination. The butadiene complex $\left[\mathrm{Zr}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCHCH} 2\right)\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Cp}^{\prime \prime}\right]$ is obtained directly from $\left[\mathrm{ZrCl}_{3} \mathrm{Cp}^{\prime \prime}\right]$ and M eCHCHCH 2 M gCl . The complexes [M (allyl)(diene) C $\left.p^{\prime \prime}\right]$ react with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ to give the zwitterionic complexes [$\mathrm{Cp}^{\prime \prime} \mathrm{M}^{+}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ -$\left\{\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{~B}^{-}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}$] which contain a 14 -electron $[\mathrm{CpM} \text { (allyl) })_{2}{ }^{+}$core stabilised by agostic bonding of the $\mathrm{B}-\mathrm{CH}_{2}$ methylene hydrogens. These zwitterions catalyse the polymerisation of ethene to high molecular weight polyethene. Catalysts with similar activities are obtained by the activation of [M (allyl)(diene) $\mathrm{Cp}^{\prime \prime}$] with [CPh_{3}]$\left[B\left(C_{6} F_{5}\right)_{4}\right]$. The thermal stability of the zwitterionic active species depends strongly on the steric requirements of the dienyl ligands and decreases sharply in the order $R^{1}=R^{2}=M e>R^{1}=M e, R^{2}=H \gg R^{1}=H, R^{2}=H$; i.e the dimethylbutadiene derivatives are stable at room temperature, while in the latter case decomposition is significant even at $-60^{\circ} \mathrm{C}$. The complexes $\left[\mathrm{Zr}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHR}^{1}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CR}^{2} \mathrm{MeCHCH} \mathrm{B}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right]\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right.$, 9 a ; $R^{1}=M e, R^{2}=H, 10$) decompose via an unusual $C-H$ activation pathway, with alkene elimination and concomitant migration of a $\mathrm{C}_{6} \mathrm{~F}_{5}$ substituent from boron to zirconium, to give the catalytically inactive boryldiene complexes $\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\eta^{4}-\mathrm{CH}_{2} \mathrm{CR}^{1} \mathrm{CHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\} \mathrm{Cp}^{\prime \prime}\right]$. The crystal structures of $\left[\mathrm{M}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Cp}^{\prime \prime}\right](\mathrm{M}=\mathrm{Zr}$ or Hf) and $\left[\mathrm{Hf}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCM} \mathrm{eCH} 2 \mathrm{~B}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right]$ are reported.

Abstract

Early-transition-metal cyclopentadienyl complexes have in recent years provided a series of important classes of olefin polymerisation catalysts. Best known are the extensively investigated metallocenes $\left[\mathrm{M} \mathrm{X}_{2} \mathrm{Cp}_{2}\right]\left(\mathrm{Cp}=\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, which, on addition of suitable activators, give rise to cationic 14 -electron compounds $\left[\mathrm{C}_{2} \mathrm{MRR}\right]^{+}$as the catalytically active species. ${ }^{1}$ W ith the possible exception of 'constraint geometry' complexes of the type $\left[\left\{\mathrm{M}_{2} \mathrm{Si}(\mathrm{Cp})(\mathrm{NR})\right\} \mathrm{M} \mathrm{X}_{2}\right]^{2}$, the potential of monocyclopentadienyl complexes [$\mathrm{M} \mathrm{X}_{3} \mathrm{C} p$] as catalyst precursors has been less well investigated, although their ability to generate syndiotactic polystyrene, ${ }^{3}$ and the high electronic unsaturation and reduced steric hindrance in the active species $[\mathrm{CpM} \mathrm{R}]^{4}{ }^{+}$ would make them very promising catalyst systems. ${ }^{4}$ On the other hand, there are indications that catalysts based on halfsandwich complexes may be less long lived and show reactivity patterns not found in metallocene chemistry. As part of our studies on ligand control of the reactivity, catalyst efficiency and deactivation pathways in methylaluminoxane (MAO)-free metal alkyl catalysts ${ }^{5}$ we have become interested in the synthesis of cationic allyl complexes $\left[\mathrm{CpM}\left(\eta^{3}-\mathrm{allyl}\right)_{2}\right]^{+}$which are isoelectronic to, but possibly more stable than, the active species in metallocene-based catalysts, $\left[\mathrm{Cp}_{2} \mathrm{M} \mathrm{R}\right]^{+}$. We report here the synthesis of a series of monocyclopentadienyl complexes of the type [$\mathrm{M} \times(1,3$-diene $) \mathrm{C} p$] $(\mathrm{X}=\mathrm{Cl}$, methyl or allyl), their activation to catalytically active zwitterionic π-allyl complexes, and unexpectedly facile $\mathrm{C}-\mathrm{H}$ activation reactions which provide novel catalyst deactivation pathways for these species.

[^0]
Results and Discussion

N eutral complexes

The reduction of $\left[\mathrm{M} \mathrm{Cl}_{3} \mathrm{Cp}^{\prime \prime}\right]\left[\mathrm{Cp}^{\prime \prime}=\eta-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiM}_{3}\right)_{2}-1,3\right]$ with 2 equivalents of sodium amalgam in tetrahydrofuran (thf) in the presence of 2,3 -dimethylbuta-1,3-diene leads to the 14 -electron complexes [$\left.\mathrm{MCl}\left(2,3-\mathrm{Me}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Cp}^{\prime \prime}\right](\mathrm{M}=\mathrm{Zr}$ 1a or $\mathrm{Hf} \mathbf{1 b})$, which are isolated in high yield as violet (Zr) or yellow-orange (H f) solids, respectively. The isoprene complexes $\left[\mathrm{M} \mathrm{CI}\left(2-\mathrm{M} \mathrm{eC}_{4}-\right.\right.$ $\left.\left.\mathrm{H}_{5}\right) \mathrm{C} \mathrm{p}^{\prime \prime}\right](\mathrm{M}=\mathrm{Zr} 2 \mathrm{a}$ or $\mathrm{Hf} \mathbf{2 b}$) are prepared similarly (Scheme 1). Throughout this study the $\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiM}_{3}\right)_{2}-1,3$ ligand was chosen as the stabilising cyclopentadienyl derivative; this ligand is comparable in bulk and electronic characteristics to be more commonly employed $\eta-C_{5} \mathrm{M}_{5}$ ($\left(p^{*}\right)$ ligand but is sterically more flexible since it is able to adopt different conformations, and often imparts enhanced stability and subtly different reactivity patterns.
The synthesis of complexes $\mathbf{1}$ and $\mathbf{2}$ is in principle analogous to that of the known Cp^{*} derivatives ${ }^{6}$ [M CI (diene) $\mathrm{C} p^{*}$]. However, whereas the $\mathrm{C} \mathrm{p}^{*}$ complexes retain co-ordinated thf which has to be removed by sublimation, the $\mathrm{C} \mathrm{p}^{\prime \prime}$ complexes afford thf-free complexes in higher yields and require the use of only stoichiometric amounts of sodium amalgam.
U nexpectedly, in the presence of an excess of sodium amalgam, mixtures of $\left[\mathrm{ZrCl}_{3} \mathrm{Cp}^{\prime \prime}\right]$ and 2,3-dimethylbuta-1,3-diene did not give la but instead afforded the deep red binuclear butadienyl complex $\mathbf{3}$. The same complex is obtained when 1a is further treated with sodium; apparently 1a is reduced to an unstable $\mathrm{Zr}^{\text {III }}$ intermediate which dimerizes through an intermolecular $\mathrm{C}-\mathrm{H}$ bond activation step losing H_{2}, to afford the

Scheme 1 (i) $\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{R}^{1}\right) \mathrm{C}\left(\mathrm{R}^{2}\right)=\mathrm{CH}_{2}, 2 \mathrm{Na}-\mathrm{Hg}$, thf, $-78^{\circ} \mathrm{C}$ to room temperature (r.t.); (ii) $\mathrm{M} \mathrm{eLi}, \mathrm{Et}_{2} \mathrm{O}$; (iii) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{M} \mathrm{gCl}$, thf-Et Cl_{2}; (iv) $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{M} \mathrm{gCl}$, thf, $0^{\circ} \mathrm{C}$ to r.t.

Scheme $2 \mathrm{R}=\mathrm{SiM}_{3}$. (i) 2,3-D imethylbuta-1,3-diene, 4 Na -Hg, thf r.t., 24 h ; (ii) $-\mathrm{H}_{2}$; (iii) hexane, r.t. to $-16^{\circ} \mathrm{C}, 38 \mathrm{~h},-\mathrm{CH}_{4}$
binuclear $\mathrm{Zr}^{\mathbf{I V}}$ product 3 (Scheme 2). Such a redox process is less likely for hafnium, and indeed there is no evidence for the formation of a hafnium analogue of 3.

Compounds $\mathbf{1 a}$ and $\mathbf{2 a}$ react with methylmagnesium chloride in diethyl ether between $-78^{\circ} \mathrm{C}$ and room temperature to give the methyl complexes $\mathbf{4 a}(\mathrm{M}=\mathrm{Zr})$ and $\mathbf{4 b}(\mathrm{M}=\mathrm{H})$ as a red solid and a spectroscopically pure orange oil, respectively. In the absence of solvent these complexes are stable at room temperature over a period of days. However, as we reported recently, ${ }^{7}$ on attempted recrystallization from light petroleum at $-16{ }^{\circ} \mathrm{C}$, 4a slowly undergoes $\mathrm{C}-\mathrm{H}$ bond activation and evolves methane, to give again complex 3.

The hafnium compound $\mathbf{4 b}$ is also accessible from the reaction of $\mathbf{1 b}$ with $\mathrm{Li}\left[\mathrm{AlM}_{4}\right]$ in thf. The expected tetramethylaluminate is not formed, most probably because of the facile abstraction of $\mathrm{AlM} \mathrm{e}_{3}$ as the adduct $\mathrm{M}_{3} \mathrm{Al} \cdot$ thf. N ot unexpectedly, compound $\mathbf{4 b}$ is more stable than the $\mathbf{Z r}$ analogue $\mathbf{4 a}$ but decomposes slowly in solution to unknown products. Variabletemperature N M R investigations provided no evidence for the hafnium analogue of 3.

Thereaction of $\mathbf{1 a}, \mathbf{1 b}$ or $\mathbf{2 a}, \mathbf{2 b}$ with allylmagnesium chloride
in diethyl ether generates the thermally stable η^{3}-allyl complexes [$\mathrm{M}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right.$)(diene) $\left.\mathrm{Cp}^{\prime \prime}\right] \mathbf{5 a}$, 5b (diene $=2,3$-dimethylbuta-1,3diene) and $\mathbf{6 a} \mathbf{a} \mathbf{6} \mathbf{b}$ (diene $=$ isoprene) as red (Zr) or yellow (Hf) crystalline solids (Scheme 1). They are readily recrystallised from light petroleum and show none of the decomposition reactions of the related 14 -electron methyl complexes. As is well known, another route to η^{3}-allyl derivatives is the direct reaction of cyclopentadienylzirconium trihalides with allyl Grignard reagents. ${ }^{8}$ This method was chosen to synthesize 7 from $\left[\mathrm{ZrCl}_{3} \mathrm{C}^{\prime \prime}\right]$ and 3 equivalents of $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{M} \mathrm{gCl}$.
All of these compounds are very air sensitive. The alkyl and allyl derivatives are soluble in all common hydrocarbon solvents whereas the chloride complexes are sparingly soluble. The complexes decompose rapidly in chlorinated solvents to give the trichlorides $\left[\mathrm{M} \mathrm{Cl}_{3} \mathrm{Cp}^{\prime \prime}\right.$].

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N \mathrm{MR}$ spectroscopic data of all new compounds are given in Table 1, ${ }^{19}$ F N M R data in Table 2. For the diene ligands the geminal coupling constants $\left.{ }^{2}\right]_{\mathrm{hr}} \mid$ of the methylene groups ($7.0-11.4 \mathrm{~Hz}$) and the ${ }^{1}{ }^{1} \mathrm{ch}$ coupling constants (139.8-146.9 Hz) are larger and smaller, respectively, than in the case of the conventional η^{4}-diene complexes; ${ }^{9}$ such features are indicative of the distinct $\sigma^{2}-\pi$-metallacyclopentane character of conjugated s-cis dienes co-ordinated to early-transition-metal centres. ${ }^{10}$
At room temperature the ${ }^{\mathbf{1}} \mathrm{H}$ NM R spectra of $\mathbf{1 a}, \mathbf{1} \mathbf{b}$ and $\mathbf{2 a}$, $\mathbf{2 b}$ show only broad peaks. Cooling solutions of $\mathbf{1 a}, \mathbf{1 b}$ at $-40^{\circ} \mathrm{C}$ resolves two isomers, at ratios of $6: 1$ for $\mathrm{M}=\mathrm{Zr}$ and 12:1 for $M=H$ f. Since the possibility of s-trans diene coordination is ruled out by the magnitude of the geminal coupling constant ${ }^{2}{ }^{\text {н }}$ ($\mathrm{M}=\mathrm{Zr}: 8.5 \mathrm{~Hz}$ for the major, and 8.7 for the minor isomer), ${ }^{11}$ the two isomers arise most probably from the diene adopting prone and supine conformations. The NM R data for the complexes $\mathbf{5 , 6}$ and $\mathbf{7}$ are in agreement with η^{3}-bonded allylic ligands. ${ }^{6,12}$

Structures of $\left[\mathrm{M} \mathrm{n}\left(\boldsymbol{\eta}^{3}\right.\right.$-allyl)($\boldsymbol{\eta}^{4}$-diene) $\left.\mathbf{C} \boldsymbol{p}^{\prime \prime}\right] 5$

Crystals of $\mathbf{5 a}$ and $\mathbf{5 b}$ suitable for an X-ray diffraction study were grown from diethyl ether at $-20^{\circ} \mathrm{C}$. The molecular structure of $\mathbf{5 a}$ is shown in Fig. 1; crystal data are listed in Table 3, and selected distances and angles in Table 4. Complex 5b is isostructural to $\mathbf{5 a}$.

Table 1 Proton and ${ }^{13} \mathrm{C}$ NMR data for the zirconium and hafnium complexes ${ }^{\text {a }}$

	${ }^{1} \mathrm{H} N \mathrm{MR}$		${ }^{13} \mathrm{C}$ N M R	
Complex	δ	A ssignment	δ	A ssignment
$\begin{aligned} & \text { 1a }\left[\mathrm{ZrCl}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Me}_{2}-2,3\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\left[^{2} \mathrm{H}_{8}\right] \text { toluene, }-40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.31(\mathrm{~s}, 18 \mathrm{H}) \\ & 0.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.5) \\ & 1.70(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.5) \\ & 2.28(\mathrm{~s}, 6 \mathrm{H}) \\ & 6.29(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}) \\ & 7.09(\text { br s, } 2 \mathrm{H}) \end{aligned}$	SiM_{3} $=\mathrm{CH}_{2}$ anti $=\mathrm{CH}_{2}$ syn diene-Me H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.30(q, J=119.1) \\ & 23.01(q, J=125.0) \\ & 65.35(\mathrm{t}, \mathrm{~J}=142.1) \\ & 123.10(\mathrm{~m}) \\ & 125.59(\mathrm{~d}, \mathrm{~J}=168.0) \\ & 125.73(\mathrm{~d}, \mathrm{~J}=168.0) \\ & 127.17(\mathrm{~m}) \end{aligned}$	SiM_{3} diene-M e $=\mathrm{CH}_{2}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ C^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $=\mathrm{CMe}$
$\begin{aligned} & \text { 1b }\left[\mathrm{HfCl}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Me}_{2}-2,3\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\left[^{2} \mathrm{H}_{8}\right] \text { toluene, }-40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.8) \\ & 0.31(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.8) \\ & 2.42(\mathrm{~s}, 6 \mathrm{H}) \\ & 6.20(\mathrm{br} \mathrm{~s}, 1 \mathrm{H}) \\ & 7.01(\mathrm{br} \mathrm{~s}, 2 \mathrm{H}) \end{aligned}$	$=\mathrm{CH}_{2}$ anti SiM_{3} $=\mathrm{CH}_{2}$ syn diene-M e H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.18(\mathrm{q}, \mathrm{~J}=119.2) \\ & 23.05(\mathrm{q}, \mathrm{~J}=126.5) \\ & 65.24(\mathrm{t}, \mathrm{~J}=141.8) \\ & 121.56(\mathrm{~d}, \mathrm{br}, \mathrm{~J}=168) \\ & 123.54(\mathrm{~m}) \\ & 124.62(\mathrm{~d}, \mathrm{~J}=168.6) \\ & 126.86(\mathrm{~m}) \end{aligned}$	SiM_{3} diene-M e $=\mathrm{CH}_{2}$ $\mathrm{C}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ C^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $=C M e$
$\begin{aligned} & \text { 2a }\left[\mathrm{ZrClI}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Me} \mathrm{e} 2\right) \mathrm{Cp}^{\prime \prime}\right] \\ & {\left[{ }^{2} \mathrm{H}_{8}\right] \mathrm{thf}} \end{aligned}$	$\begin{aligned} & 0.40,0.41(\mathrm{~s}, 9 \mathrm{H}, \text { each }) \\ & 0.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6.9) \\ & 0.91(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=8.3) \\ & 1.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=6.9) \\ & 1.44(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=8.3) \\ & 2.14(\mathrm{~s}, 3 \mathrm{H}) \\ & 5.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=8.3) \\ & 6.63,6.77,6.8(\mathrm{~m}, 1 \mathrm{H} \text { each }) \end{aligned}$	$\begin{aligned} & \mathrm{SiM}_{\mathrm{C}}^{3} \\ & =\mathrm{CH}_{2} \text { anti } \\ & =\mathrm{CH}_{2} \text { anti } \\ & =\mathrm{CH}_{2} \text { syn } \\ & =\mathrm{CH}_{2} \text { syn } \\ & \text { diene-M e } \\ & =\mathrm{CH} \\ & \mathrm{H}^{2,4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & -0.12,0.00(\mathrm{q}, \mathrm{~J}=119.1) \\ & 25.45(\mathrm{q}, \mathrm{~J}=126.0) \\ & 52.84,57.42(\mathrm{t}, \mathrm{~J}=143,141.9) \\ & 118.46(\mathrm{~d}, \mathrm{~J}=159.2) \\ & 120.42,121.64(\mathrm{~d}, \mathrm{~J})=169) \\ & 123.3(\mathrm{~d}, \mathrm{~J}=166.8) \\ & 126.06,126.2(\mathrm{~m}) \\ & 135.95(\mathrm{~m}) \end{aligned}$	SiM e_{3} diene-M e $\begin{aligned} & =\mathrm{CH}_{2} \\ & =\mathrm{CH}^{4,5} \\ & \mathrm{C}^{4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{C}^{2} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{C}^{1,3} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & =\mathrm{CMe} \end{aligned}$
$\begin{aligned} & \mathbf{2 b}\left[\mathrm{HfCl}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Me}-2\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \end{aligned}$	$\begin{aligned} & 0.14(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=10.1) \\ & 0.31(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=10.1) \\ & 1.70(\mathrm{t}, \mathrm{br}, 1 \mathrm{H}) \\ & 2.42(\mathrm{~s}, 3 \mathrm{H}) \\ & 6.04(\mathrm{t}, \mathrm{br}, 1 \mathrm{H}) \\ & 6.25,6.85,6.79(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H} \text { each }) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiM}_{3} \\ & =\mathrm{CH}_{2} \text { syn } \\ & =\mathrm{CH}_{2} \text { syn } \\ & \text { diene-M e } \\ & =\mathrm{CH} \\ & \mathrm{H}^{2,4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & 0.19,0.26(\mathrm{q}, \mathrm{~J}=119.3) \\ & 26.70(\mathrm{q}, \mathrm{~J}=128.9) \\ & 58.18,60.88(\mathrm{t}, \mathrm{~J}=139.8,141.3) \\ & 117.68(\mathrm{~d}, \mathrm{~J}=154.7) \\ & 123.1,123.89(\mathrm{br} \mathrm{~d}, \mathrm{~J}=169.0) \\ & 124.20(\mathrm{~d}, \mathrm{~J}=168.3) \\ & 123.61,123.47(\mathrm{~m}) \\ & 135.88(\mathrm{~m}) \end{aligned}$	SiM_{3} diene-M e $\begin{aligned} & =\mathrm{CH}_{2} \\ & =\mathrm{CH}^{4,5} \\ & \mathrm{C}^{4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{C}^{2} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{C}^{1,3} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & =\mathrm{CMe} \end{aligned}$
$\begin{aligned} & 3\left[\mathrm{Zr}\left(\mu-\eta^{1}: \eta^{4}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{M} \mathrm{e}_{2}-2,3\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \end{aligned}$	$\begin{aligned} & 0.06,0.52(\mathrm{~s}, 9 \mathrm{H} \text { each }) \\ & 1.50(\mathrm{~s}, 1 \mathrm{H}) \\ & 1.80,1.85(\mathrm{~s}, 3 \mathrm{H} \text { each }) \\ & 2.03,3.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=5.7) \\ & 4.58,6.20(\mathrm{~d}, 1 \mathrm{H} \text { each, } \mathrm{J}=1.9) \\ & 6.60(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=1.9) \end{aligned}$	SiM_{3} ZrCHZr diene-M e $=\mathrm{CH}_{2}$ $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.70,0.80(q, J=119.0) \\ & 24.0,25.4(q, J=126.0,126.2) \\ & 65.60(\mathrm{t}, \mathrm{~J}=144.5) \\ & 111.20,111.80(\mathrm{~m}) \\ & 116.0,116.7(\mathrm{~d}, \mathrm{~J}=168.3) \\ & 119.9(\mathrm{~d}, \mathrm{~J}=169.0) \\ & 127.5(\mathrm{~m}) \\ & 174.9(\mathrm{~d}, \mathrm{~J}=11) \end{aligned}$	SiM_{3} diene-M e $=\mathrm{CH}_{2}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ C^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $=\mathrm{CMe}$ ZrCHZr
$\begin{aligned} & 4 \mathrm{a}\left[\mathrm{ZrMe}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Me}_{2}-2,3\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right] \end{aligned}$	$\begin{aligned} & -0.30(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H}) \\ & 0.27(\mathrm{~s}, 18 \mathrm{H}) \\ & 0.45(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.6) \\ & 2.00(\mathrm{~s}, 6 \mathrm{H}) \\ & 2.34(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=9.6) \\ & 6.04(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}) \\ & 7.10(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) \end{aligned}$	$\begin{aligned} & \mathrm{Zr}-\mathrm{M} \mathrm{e} \\ & \mathrm{SiM}_{3} \\ & =\mathrm{CH}_{2} \text { anti } \\ & \text { diene-M e } \\ & =\mathrm{CH}_{2} \text { syn } \\ & \mathrm{H}^{4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{H}^{2} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & 0.11(\mathrm{q}, \mathrm{~J}=119.0) \\ & 23.27(\mathrm{q}, \mathrm{~J}=126.1) \\ & 45.15(\mathrm{br}, \mathrm{q}, \mathrm{~J}=113.2) \\ & 63.16(\mathrm{t}, \mathrm{~J}=142.3) \\ & 117.37(\mathrm{~d}, \mathrm{~J}=169.8) \\ & 119.84(\mathrm{~m}) \\ & 122.58(\mathrm{~d}, \mathrm{~J}=167.5) \\ & 123.38(\mathrm{~m}) \end{aligned}$	SiM e_{3} diene-M e $\mathrm{Zr}-\mathrm{Me}$ $-\mathrm{CH}_{2}$ $\mathrm{C}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ C^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $=\mathrm{CMe}$
$\begin{aligned} & 4 b\left[\mathrm{HfMe}_{\mathrm{f}}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{M} \mathrm{e}_{2}-2,3\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \end{aligned}$	$\begin{aligned} & -0.65(\mathrm{~s}, 3 \mathrm{H}) \\ & -0.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=11.4) \\ & 0.25(\mathrm{~s}, 18 \mathrm{H}) \\ & 2.11(\mathrm{~s}, 6 \mathrm{H}) \\ & 2.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=11.4) \\ & 6.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{~J}=1.8) \\ & 6.91(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=1.8) \end{aligned}$	Hf-Me $=\mathrm{CH}_{2}$ anti SiM_{3} diene-M e $=\mathrm{CH}_{2}$ syn $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.70(\mathrm{q}, \mathrm{~J}=119.1) \\ & 23.20(\mathrm{q}, \mathrm{~J}=126.1) \\ & 53.35(\mathrm{q}, \mathrm{br}, \mathrm{~J}=111.4) \\ & 68.02(\mathrm{t}, \mathrm{~J}=139.5) \\ & 117.24(\mathrm{~d}, \mathrm{~J}=169.0) \\ & 122.37(\mathrm{~d}, \mathrm{~J}=168.3) \\ & 123.66(\mathrm{~m}) \\ & 126.80(\mathrm{~m}) \end{aligned}$	SiM_{3} diene-M e $\mathrm{Hf}-\mathrm{Me}$ $=\mathrm{CH}_{2}$ $\mathrm{C}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ C^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $=C M e$
$\begin{aligned} & 5 \mathrm{a}\left[\mathrm{Zr}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{M} \mathrm{e}_{2}-2,3\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right. \end{aligned}$	$\begin{aligned} & -0.45(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=7.2) \\ & 0.26(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.64(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=14.5) \\ & 1.79(\mathrm{~m}, 4 \mathrm{H}) \\ & 1.86(\mathrm{~s}, 6 \mathrm{H}) \\ & 5.70(\mathrm{~m}, 1 \mathrm{H}) \\ & 6.29(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=1.9) \\ & 6.48(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=1.9) \end{aligned}$	$=\mathrm{CH}_{2}$ anti SiM_{3} CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ and $=\mathrm{CH}_{2}$ diene-M e CH of $\mathrm{C}_{3} \mathrm{H}_{5}$ H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.42(\mathrm{q}, \mathrm{~J}=119.0) \\ & 22.39(\mathrm{q}, \mathrm{~J}=125.9) \\ & 53.41(\mathrm{t}, \mathrm{~J}=145.2) \\ & 59.33(\mathrm{t}, \mathrm{~J}=152.5) \\ & 117.86(\mathrm{~m}) \\ & 119.70(\mathrm{~d}, \mathrm{~J}=167.5) \\ & 120.80(\mathrm{~m}) \\ & 122.70(\mathrm{~d}, \mathrm{~J}=166.0) \\ & 127.82(\mathrm{~d}, \mathrm{~J}=153.2) \end{aligned}$	SiM_{3} diene-M e $=\mathrm{CH}_{2}$ CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ $=C M e$ $\mathrm{C}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ C^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ CH of $\mathrm{C}_{3} \mathrm{H}_{5}$

Table 1 Continued
${ }^{1} \mathrm{H} N \mathrm{MR}$

Complex	δ	A ssignment	δ	A ssignment
$\begin{aligned} & \mathbf{5 b}\left[\mathrm{Hf}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{M} \mathrm{e}_{2}-2,3\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \end{aligned}$	$\begin{aligned} & -0.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=8.4) \\ & 0.25(\mathrm{~s}, 18 \mathrm{H}) \\ & 1.64(\mathrm{~m}, 4 \mathrm{H}) \\ & 1.93(\mathrm{~s}, 6 \mathrm{H}) \\ & 5.65(\mathrm{~m}, 1 \mathrm{H}) \\ & 6.19(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=1.9) \\ & 6.40(\mathrm{~d}, 2 \mathrm{H}, \mathrm{~J}=1.9) \end{aligned}$	$=\mathrm{CH}_{2}$ anti $\mathrm{SiM} \mathrm{e}_{3}$ CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ and CH_{2} syn diene-M e CH of $\mathrm{C}_{3} \mathrm{H}_{5}$ H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.73(q, J=119.7) \\ & 22.17(q, J=125.6) \\ & 51.50(t, J=142.5) \end{aligned}$ $\begin{aligned} & 57.13(\mathrm{t}, \mathrm{~J}=152.0) \\ & 116.30(\mathrm{~m}) \\ & 119.06(\mathrm{~d}, \mathrm{~J}=168.3) \\ & 121.05(\mathrm{~m}) \\ & 121.70(\mathrm{~d}, \mathrm{~J}=166.8) \\ & 127.87(\mathrm{~d}, \mathrm{~J}=152.4) \end{aligned}$	SiMe_{3} diene-M e $=\mathrm{CH}_{2}$ CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ $=C M e$ $\mathrm{C}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ C^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ CH of $\mathrm{C}_{3} \mathrm{H}_{5}$
$\begin{aligned} & 6 \mathrm{a}\left[\mathrm{Zr}^{2}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Me}-2\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \end{aligned}$	$\begin{aligned} & -0.59,-0.52(\mathrm{~d}, \mathrm{~J}=7.2, \mathrm{~m}, 1 \mathrm{H} \\ & \text { each } \\ & 0.25,0.26(\mathrm{~s}, 9 \mathrm{H} \text { each }) \\ & 1.33,1.64(\mathrm{~d}, 1 \mathrm{H} \text { each, } \mathrm{J}=14.5) \\ & 1.57,2.01(\mathrm{~m}, 1 \mathrm{H} \text { each }) \\ & 1.89(\mathrm{~s}, 3 \mathrm{H}) \\ & 2.01(\mathrm{~m}, 2 \mathrm{H}) \\ & 5.14(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=9.8) \\ & 6.03(\mathrm{~m}, 1 \mathrm{H}) \\ & 6.21(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=1.9) \\ & 6.42,6.44(\mathrm{~m}, 1 \mathrm{H} \text { each }) \end{aligned}$	$=\mathrm{CH}_{2}$ anti SiMe_{3} CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ diene-M e $=\mathrm{CH}_{2} \mathrm{syn}$ $=\mathrm{CH}$ CH of $\mathrm{C}_{3} \mathrm{H}_{5}$ H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.48(q, J=119.1) \\ & 26.2(q, J=126.0) \\ & 46.69,51.25(t, J=146.9,147.5) \\ & 56.96,59.56(t, j=152.2) \\ & 110.01(d, J=162.2) \\ & 119.7,119.8(d, J=167.5) \\ & 120.65,120.8(\mathrm{~m}) \\ & 122.74(\mathrm{~d}, \mathrm{~J}=166) \\ & 123.31(\mathrm{~m}) \\ & 125.70(\mathrm{~d}, \mathrm{~J}=153.2) \end{aligned}$	$\begin{aligned} & \mathrm{SiM}_{3} \\ & \text { diene-M e } \\ & =\mathrm{CH}_{2} \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & =\mathrm{CH} \\ & \mathrm{C}^{4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{C}^{1,3} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{C}^{2} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & =\mathrm{CM} \mathrm{e} \\ & \mathrm{CH} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \end{aligned}$
$\begin{aligned} & \mathbf{6 b}\left[\mathrm{Hf}_{\mathrm{f}}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Me}-2\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \end{aligned}$	$\begin{aligned} & -0.93(\mathrm{~m}, 2 \mathrm{H}) \\ & 0.22,0.25(\mathrm{~s}, 9 \mathrm{H} \text { each }) \\ & 1.32,1.45,1.75 \\ & (\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}, 4 \mathrm{H}) \\ & 2.0(\mathrm{~s}, 3 \mathrm{H}) \\ & 5.11(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=9.1) \\ & 6.02(\mathrm{~m}, 1 \mathrm{H}) \\ & 6.10(\mathrm{t}, 1 \mathrm{H}, \mathrm{~J}=1.9) \\ & 6.32,6.39(\mathrm{~m}, 1 \mathrm{H} \text { each }) \end{aligned}$	$=\mathrm{CH}_{2}$ anti $\mathrm{SiM} \mathrm{e}_{3}$ CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ and CH_{2} syn diene-M e $=\mathrm{CH}$ CH of $\mathrm{C}_{3} \mathrm{H}_{5}$ H^{2} of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{H}^{4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$	$\begin{aligned} & 0.39(q, J=119.1) \\ & 26.09(q, J=125.8) \\ & 44.47,48.93(t, J=144.3,145) \\ & 54.7,57.31(t, J=151.2) \\ & 109.40(d, J=163.0) \\ & 119.1,119.13(d, J=167) \\ & 120.8,121.0(\mathrm{~m}) \\ & 121.74(\mathrm{~d}, \mathrm{~J}=166.0) \\ & 121.90(\mathrm{~m}) \\ & 126.06(\mathrm{~d}, \mathrm{~J}=153.9) \end{aligned}$	SiM_{3} diene-M e $=\mathrm{CH}_{2}$ $\begin{aligned} & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & =\mathrm{CHH} \\ & \mathrm{C}^{4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \\ & \mathrm{C}^{1,3} \text { of } \mathrm{C}_{5}{ }_{3} \\ & \mathrm{CCM}_{5} \mathrm{H}_{3} \\ & \mathrm{CH} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \end{aligned}$
$\begin{aligned} & 7\left[\mathrm{Zr}_{\left.\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-1\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Cp}^{\prime \prime}\right]}^{\left(\mathrm{C}_{6} \mathrm{D}_{6}\right]}\right. \end{aligned}$	$\begin{aligned} & -0.70,-0.37(\mathrm{~m}, 1 \mathrm{H} \text { each }) \\ & 0.25,0.26(\mathrm{~s}, 9 \mathrm{H} \text { each }) \\ & 1.01,1.28(\mathrm{~d}, 1 \mathrm{H} \text { each, } \mathrm{J}=13) \\ & 1.43(\mathrm{~d}, 3 \mathrm{H}, \mathrm{~J}=5.7) \\ & 1.82,2.17(\mathrm{t}, 1 \mathrm{H} \text { each, } \mathrm{J}=8.3) \\ & 2.06(\mathrm{~m}, 1 \mathrm{H}) \\ & 5.43,5.63(\mathrm{~m}, 1 \mathrm{H}) \\ & 5.87(\mathrm{~m}, 1 \mathrm{H}) \\ & 6.2,6.45,6.45(\mathrm{~m}, 1 \mathrm{H} \text { each }) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \text { anti } \\ & \mathrm{SiM} \mathrm{e}_{3} \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{4} \mathrm{H}_{7} \\ & \mathrm{M} \mathrm{e} \mathrm{of} \mathrm{C}_{4} \mathrm{H}_{7} \\ & =\mathrm{CH}_{2} \text { syn } \\ & \mathrm{CH} \text { M of } \mathrm{C}_{4} \mathrm{H}_{7} \\ & =\mathrm{CH} \\ & \mathrm{CH} \text { of } \mathrm{C}_{4} \mathrm{H}_{7} \\ & \mathrm{H}^{2,4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & 0.33,0.40 \\ & 18.56 \\ & 46.78,50.31 \\ & 50.84,73.47 \\ & 112.03,112.15 \\ & 119.44,120.36,122.37 \\ & 120.49,120.97 \\ & 127.12 \end{aligned}$	SiMe_{3} CHMe $=\mathrm{CH}_{2}$ $\mathrm{CH}_{2}, \mathrm{CHMe}$ of $\mathrm{C}_{4} \mathrm{H}_{7}$ $=\mathrm{CH}$ $\mathrm{C}^{2,3,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ CH of $\mathrm{C}_{4} \mathrm{H}_{7}$
$\begin{aligned} & 8 \mathrm{a}\left[\mathrm { Zr } (\mathrm { C } _ { 3 } \mathrm { H } _ { 5 }) \left\{\mathrm{CH}_{2} \mathrm{CM} \text { eCM eCH }{ }_{2} \mathrm{~B}-\right.\right. \\ & \left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right) \end{aligned}$	$-1.78,-0.33$ ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H}$ each) $0.19,0.36$ ($\mathrm{s}, 9 \mathrm{H}$ each) 1.41, 2.52 ($\mathrm{d}, 1 \mathrm{H}$ each, $\mathrm{J}=8.3$) $1.68,1.76$ (s, 3 H each) 1.96, 2.66, 3.19 (m, d, d, $2 \mathrm{H}, 1 \mathrm{H}, 1 \mathrm{H}, \mathrm{J}=15.3$) $5.96(\mathrm{~m}, 1 \mathrm{H})$ 6.44, 6.51, 6.96 ($\mathrm{m}, 1 \mathrm{H}$ each)	$\begin{aligned} & =\mathrm{CH}_{2} \mathrm{~B} \\ & \mathrm{SiM} \mathrm{e}_{3} \\ & =\mathrm{CH}_{2} \\ & \text { diene-M e } \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & \mathrm{CH} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & \mathrm{H}^{2,4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & -0.55,-0.23(q, J=119) \\ & 16.93,23.77(q, J=129.5,127.8) \\ & 31(\mathrm{~s}, v b r) \\ & 59.64(\mathrm{t}, \mathrm{~J}=150.1) \\ & 67.12,71.03(\mathrm{t}, \mathrm{~J}=155.9,158.6) \\ & 112.91,125.28,129.26,138(\mathrm{~m}) \\ & \\ & 117.53,124,131.45 \\ & (\mathrm{~d}, \mathrm{~J}=170.5,169.8,172) \end{aligned}$	SiM_{3} diene-M e $\begin{aligned} & =\mathrm{CH}_{2} \mathrm{~B} \\ & =\mathrm{CH}_{2} \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & \mathrm{C}^{1,3} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \text { and } \\ & =\mathrm{CMM} \\ & \mathrm{C}^{2,4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$
$\begin{aligned} & 8 b\left[\mathrm { Hf } _ { \mathrm { f } } (\mathrm { C } _ { 3 } \mathrm { H } _ { 5 }) \left\{\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCM} \mathrm{eCH} \mathrm{H}_{2} \mathrm{~B}-\right.\right. \\ & \left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right] \mathrm{CD}^{\prime \prime}\right] \\ & \left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}\right) \end{aligned}$	$-1.39,-0.51$ (s, br, 1 H each) 0.19, 0.39 (s, 9 H each) 1.08, 2.26 ($\mathrm{d}, 1 \mathrm{H}$ each, J = 9.9) 1.68, 1.9 (m, d, 1 H each, J = 15.2) 1.72, 1.84 ($\mathrm{s}, 3 \mathrm{H}$ each) 2.4, 3.19 ($\mathrm{m}, \mathrm{d}, 1 \mathrm{H}$ each, J = 15.2) 6.07 ($\mathrm{m}, 1 \mathrm{H}$) 6.32, 6.37, 6.77 ($\mathrm{m}, 1 \mathrm{H}$ each)	$\begin{aligned} & =\mathrm{CH}_{2} \mathrm{~B} \\ & \mathrm{SiM} \mathrm{e}_{3} \\ & =\mathrm{CH}_{2} \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & \text { diene-M e } \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & \mathrm{CH} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & \mathrm{H}^{2,4,5} \text { of } \mathrm{C}_{5} \mathrm{H}_{3} \end{aligned}$	$\begin{aligned} & -0.46,-0.23(\mathrm{q}, \mathrm{~J}=119.7) \\ & 16.39,23.72(\mathrm{q}, \mathrm{~J}=128,127.7) \\ & 29(\mathrm{vbr}) \\ & 55.66(\mathrm{t}, \mathrm{~J}=147.7) \\ & 64.36,67.21(\mathrm{t}, \mathrm{~J}=152.7,153.6) \\ & 111.53,125.15,128.12,138(\mathrm{~m}) \\ & 116.44,122.93,130.25 \\ & (\mathrm{~d}, \mathrm{~J}=170,163,169) \\ & 122(\mathrm{~s}, \mathrm{vbr}) \\ & 136.9\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{cF}}=246.8\right) \\ & 139.2\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{cF}}=252.8\right) \\ & 142.67\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{l}}=153.2\right) \\ & 148.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{cF}}=233.2\right) \end{aligned}$	SiM_{3} diene-M e $\begin{aligned} & =\mathrm{CH}_{2} \mathrm{~B} \\ & =\mathrm{CH}_{2} \end{aligned}$ CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ $\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ and $=\mathrm{CMe}$ $\mathrm{C}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ ipso-C ${ }_{6} \mathrm{~F}_{5}$ $\mathrm{m}-\mathrm{C}_{6} \mathrm{~F}_{5}$ $\mathrm{p}-\mathrm{C}_{6} \mathrm{~F}_{5}$ CH of $\mathrm{C}_{3} \mathrm{H}_{5}$ $0-C_{6} F_{5}$
$\begin{aligned} & 9 \mathrm{a}\left[\mathrm { Zr } (\mathrm { C } _ { 3 } \mathrm { H } _ { 5 }) \left\{\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCHCH} \mathrm{C}_{2} \mathrm{~B}-\right.\right. \\ & \left.\left.\left(\mathrm{C}_{6} \mathrm{FF}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\left[\left[^{2} \mathrm{H}_{8} \text { toluene, }-40^{\circ} \mathrm{C}\right)\right.\right. \end{aligned}$	$\begin{aligned} & -1.72(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}) \\ & -1.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=14.1) \\ & -0.06,0.05(\mathrm{~s}, 9 \mathrm{H} \text { each }) \\ & 0.90,1.07(\mathrm{~m}, 1 \mathrm{H} \text { each }) \\ & 1.01,2.57(\mathrm{~d}, 1 \mathrm{H} \text { each, } \mathrm{J}=7.4) \\ & 1.11(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$	$\begin{aligned} & =\mathrm{CH}_{2} \mathrm{~B} \\ & =\mathrm{CH}_{2} \mathrm{~B} \\ & \mathrm{SiM}_{3} \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & =\mathrm{CH}_{2} \\ & \text { diene-Me } \end{aligned}$	$\begin{aligned} & -0.86,-0.27(q, J=119.5) \\ & 25(s, v b r) \\ & 25.55(q, J=128.4) \\ & 62.01(t, J=152.1) \\ & 64.55,71.01(t, J=158,159.9) \\ & 103.98(d, J=169.8 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \mathrm{SiM} \mathrm{e}_{3} \\ & =\mathrm{CH}_{2} \mathrm{~B} \\ & \text { diene-M e } \\ & =\mathrm{CH}_{2} \\ & \mathrm{CH}_{2} \text { of } \mathrm{C}_{3} \mathrm{H}_{5} \\ & =\mathrm{CH} \end{aligned}$

Table 1 Continued
${ }^{1} \mathrm{H} N \mathrm{MR}$
Complex
9a $\left[\mathrm{Zr}^{\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)}\left\{\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCHCH}\right.\right.$
$\left(\mathrm{C}_{6} \mathrm{~F}-\right.$
$\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{C}^{\prime \prime}\right]$
$\left(\left[^{2} \mathrm{H}_{8}\right.\right.$ tololuene, $-40^{\circ} \mathrm{C}$)

9b $\left[\mathrm{Hf}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCHCH} 2 \mathrm{~B}-\right.\right.$
$\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} C p^{\prime \prime}\right]$
($\left[^{2} \mathrm{H}_{8}\right.$ Itoluene, $-20^{\circ} \mathrm{C}$)

$\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cp}^{\prime \prime}\right]$
($\left[^{2} \mathrm{H}\right.$ 8 $]$ toluene, $25^{\circ} \mathrm{C}$)

12a $\left[\mathrm{Zr}\left\{\mathrm{CH}_{2} \mathrm{CM}\right.\right.$ eCHCHB-
$\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cp}^{\prime \prime}\right]^{\mathrm{b}}$
($\left[^{2} \mathrm{H}_{8}\right.$ Itoluene)

δ	Assignment
$2.42,2.65(d, 1 \mathrm{H}$ each, $J=15.1)$	CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$
$4.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.1)$	$=\mathrm{CH}$
$5.62(\mathrm{~m}, 1 \mathrm{H})$	CH of $\mathrm{C}_{3} \mathrm{H}_{5}$
$5.91,6.12,6.33(\mathrm{~m}, 1 \mathrm{H}$ each $)$	$\mathrm{H}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$

$-1.78(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$	$=\mathrm{CH}_{2} \mathrm{~B}$
$-0.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14)$	$=\mathrm{CH}_{2} \mathrm{~B}$
$-0.3,0.05(\mathrm{~s}, 9 \mathrm{H}$ each $)$	$\mathrm{SiM} \mathrm{e}_{3}$
$0.80(\mathrm{~m}, 2 \mathrm{H})$	CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$ and
$1.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.6)$	$=\mathrm{CH}_{2}$
$1.22(\mathrm{~s}, 3 \mathrm{H})$	CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$
$2.17,2.76(\mathrm{~d}, 1 \mathrm{H}$ each, J = 14.9)	CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$
$2.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.9)$	
$4.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14)$	$=\mathrm{CH}_{2}$
$5.79(\mathrm{~m}, 1 \mathrm{H})$	$=\mathrm{CH}^{2}$
$5.87,6.13,6.18(\mathrm{~m}, 1 \mathrm{H}$ each $)$	$\mathrm{CH}^{2,4,5}$ of $\mathrm{C}_{3} \mathrm{H}_{5}$

$-1.68(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$	$=\mathrm{CH}_{2} \mathrm{~B}$
$-1.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.4)$	$=\mathrm{CH}_{2} \mathrm{~B}$
$-0.22,0.09(\mathrm{~s}, 9 \mathrm{H}$ each $)$	$\mathrm{SiM} \mathrm{e}_{3}$
$0.92(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=5.6)$	CHM
$1.98,2.21(\mathrm{~m}, 1 \mathrm{H}$ each $)$	$=\mathrm{CH}_{2}$
$1.65,2.0(\mathrm{~d}, \mathrm{~J}=13.4,1 \mathrm{H}$ each $)$	CH_{2} of $\mathrm{C}_{4} \mathrm{H}_{7}$
$1.71(\mathrm{~m}, 1 \mathrm{H})$	CH M e
$4.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.87)$	$=\mathrm{CH}$
$5.01(\mathrm{~m}, 1 \mathrm{H})$	CH of $\mathrm{C}_{4} \mathrm{H}_{7}$
$5.17(\mathrm{~m}, 1 \mathrm{H})$	$=\mathrm{CH}$
$5.87,5.93,6.63(\mathrm{~m}, 1 \mathrm{H}$ each $)$	$\mathrm{H}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$

$-0.14,0.05(\mathrm{~s}, 9 \mathrm{H}$ each $)$	SiM_{3}
$0.59,2.19(\mathrm{t}, 1 \mathrm{H}$ each, $\mathrm{J}=8.9)$	$=\mathrm{CH}_{2}$
$2.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.6)$	$=\mathrm{CH} \mathrm{B}$
$5.99,6.23(\mathrm{br} \mathrm{t}, \mathrm{q}, 1 \mathrm{H}$ each, J=9.2)	$=\mathrm{CH}$
$6.48,6.65,7.6$ (s, br, 1 H each $)$	$\mathrm{H}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$

$-0.15,0.03$ (s, 9 H each)	SiM_{3}
$1.44,3.42$ (m, dd, 1 H each,	$=\mathrm{CH}_{2}$
$\mathrm{J}=8.9$ and 6.6)	
5.1, 5.82 (m, 1 H each)	= CH
5.34 (d, 1 H, J = 12)	$=\mathrm{CHB}$
5.97, 7.01, 7.7 (s, br, 1 H each)	$\mathrm{H}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
-0.13, 0.06 (s, 9 H each)	SiM_{3}
0.60 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=10.9$)	$=\mathrm{CH}_{2}$ anti
1.33 (s, 3 H)	diene-M e
2.05 (d, 1 H, J = 10.9)	$=\mathrm{CH}_{2}$ syn
$3.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.7)$	$=\mathrm{CHB}$
5.89 (d, 1 H, J = 11.7)	$=\mathrm{CH}$
6.6, 6.7, 7.5 (s, br, 1 H each)	$\mathrm{H}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}$

$-0.13,-0.08(s, 9 \mathrm{H}$ each $)$	SiM_{3}
$0.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.4)$	$=\mathrm{CH}_{2}$ anti
$1.47(\mathrm{~s}, 3 \mathrm{H})$	diene-M e
$1.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.9)$	$=\mathrm{CH}_{2}$ syn
$2.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.3)$	$=\mathrm{CHB}$
$5.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.3)$	$=\mathrm{CH}$
$6.45,6.6,7.47(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$ each $)$	$\mathrm{H}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$

12b [Hf f $\mathrm{CH}_{2} \mathrm{CM}$ eCHCHB-
$\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cp}^{\prime \prime}\right]^{\mathrm{b}}$
($\left[{ }^{2} \mathrm{H}_{8}\right.$]toluene)
67.62 ($\mathrm{t}, \mathrm{J}=150$ (J J $=$
$67.62(t, J=150.0)$
$93.64(d, b r, J \approx 137)$
120.54, 127.22, 129.53
(d, J = 170.5, 169.0, 160.7)
124.65, 135.64, (d, J = 167.5, 166)
127.4, 134.56 (m)
$-1.39,-0.47(q$, ,
$82.31(\mathrm{t}, \mathrm{J}=152.8$
97.17 ($\mathrm{d}, \mathrm{br}, \mathrm{J} \approx 137$)
123.96, 134.05 (m)
125.68, 129.68 ($\mathrm{d}, \mathrm{J}=165$)
$125.9,128.13,135.11(\mathrm{~d}, \mathrm{~J}=172)$
$-0.93,-0.68(q, J=119.6)$
$26.63(q, J=127.8)$
$71.50(\mathrm{t}, \mathrm{J}=146.7)$
96.95 (d, br, J ≈ 140)
120.59, $127.26(\mathrm{~d}, \mathrm{~J}=170.5$,
170.5) and one under [${ }^{2} \mathrm{H}_{8}$]-
toluene signals
121.48 ($\mathrm{d}, \mathrm{J}=169$)
134.75, 149.7 (m)
${ }^{13} \mathrm{C}$ N M R

δ	A ssignment
$118.28,124.34,130.71$	$\mathrm{C}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
(d, J = 169, 172, 168.3)	
122 (s, vbr)	ipso-C F_{5}
126.81, 143.18 (m)	$\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ and $=\mathrm{CM} \mathrm{e}$
135.93 (d, J = 155.4)	CH of $\mathrm{C}_{3} \mathrm{H}_{5}$
137.2 (d, J cF $=249$)	$\mathrm{m}-\mathrm{C}_{6} \mathrm{~F}_{5}$
139.3 (d, J cF $=249.8$)	$\mathrm{p}-\mathrm{C}_{6} \mathrm{~F}_{5}$
148.3 ($\mathrm{d}, \mathrm{J}_{\text {c }}=240.7$)	$0-\mathrm{C}_{6} \mathrm{~F}_{5}$
$-0.84,-0.31(q, J=119)$	SiM_{3}
23 (s, vbr)	$=\mathrm{CH}_{2} \mathrm{~B}$
25.64 (q, J = 128.6)	diene-M e
57.11 (t, J = 146.8)	$=\mathrm{CH}_{2}$
$61.61,67.13$ (t, J = 151.7, 152)	CH_{2} of $\mathrm{C}_{3} \mathrm{H}_{5}$
103.6 (d, J = 167.5)	$=\mathrm{CH}$
116.91, 123.02, 129.21	$\mathrm{C}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
$(\mathrm{d}, \mathrm{J}=170,172.8,168.9)$	
122 (s, vbr)	ipso-C ${ }_{6} \mathrm{~F}_{5}$
126.40, 143.89 (m)	$\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ and $=\mathrm{CMe}$
137.51 (d, J = 156.4)	CH of $\mathrm{C}_{3} \mathrm{H}_{5}$
137.4 (d, J cF $=249.8$)	$\mathrm{m}-\mathrm{C}_{6} \mathrm{~F}_{5}$
$139.4\left(\mathrm{~d}, \mathrm{~J}_{\text {cF }}=249.8\right)$	$\mathrm{p}-\mathrm{C}_{6} \mathrm{~F}_{5}$
148.3 ($\mathrm{d}, \mathrm{J}_{\text {cF }}=240$)	$0-\mathrm{C}_{6} \mathrm{~F}_{5}$
-0.91, -0.71	SiMe_{3}
18.49	CHMe
28 (br)	$=\mathrm{CH}_{2} \mathrm{~B}$
57.58	$=\mathrm{CH}_{2}$
61.18	CH_{2} of $\mathrm{C}_{4} \mathrm{H}_{7}$
83.45	CHMe
106.45, 133.09	$=\mathrm{CH}$
118.56, 124.43, 125.61	$\mathrm{C}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
126.35 (br)	$\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
137.37	CH of $\mathrm{C}_{4} \mathrm{H}_{7}$
137.23 ($\mathrm{fcF}^{\text {c }}$ 142.2)	$\mathrm{m}-\mathrm{C}_{6} \mathrm{~F}_{5}$
139.42 (${ }_{\text {cF }}=153$)	$\mathrm{p}-\mathrm{C}_{6} \mathrm{~F}_{5}$
148.23 ($\mathrm{JcF}=138.4)$	$0-\mathrm{C}_{6} \mathrm{~F}_{5}$

SiMe_{3}
$=\mathrm{CH}_{2}$
$=\mathrm{CHB}$
$\mathrm{C}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
$=\mathrm{CH}$
$\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
$\mathrm{SiM} \mathrm{e}_{3}$
$=\mathrm{CH}_{2}$
$=\mathrm{CHB}$
$\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
$={ }_{C^{2,4,5}}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
SiM_{3}
diene-M e
$=\mathrm{CH}_{2}$
$=\mathrm{CH}$ B
$\mathrm{C}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
$=\mathrm{CH}$
$\mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ and
$=\mathrm{CMe}$
SiM_{3}
diene-M e
$=\mathrm{CH}_{2}$
$=\mathrm{CHB}$
$\mathrm{C}^{2,4,5}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$
$=\mathrm{CH}$
${ }^{=} \mathrm{C}^{1,3}$ of $\mathrm{C}_{5} \mathrm{H}_{3}$ and
$=\mathrm{CMe}$
${ }^{\text {a }}$ All shifts are in ppm and J values in Hz . ${ }^{\text {b }}$ Carbon- 13 NMR signals for the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups for these complexes have been omitted.

Table 2 Fluorine-19 N M R data*

Complex	δ	A ssignment
$\begin{aligned} & 8 \mathrm{a}\left[\mathrm{Zr}\left\{\mathrm{CH}_{2} \mathrm{CM} \text { eCM eCH }{ }_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -129.6,-130,132.2,-132.6,-134,-134.7\left(d, 1 F \text { each, } J_{F F}=19.6\right) \\ & -159.9,-160.1,-160.6\left(t, 1 F \text { each, } J_{F F}=19.7\right) \\ & -164.2,-165.1,-165.6,-167(\mathrm{~m}, 2 \mathrm{~F}, 1 \mathrm{~F}, 2 \mathrm{~F}, 1 \mathrm{~F}) \end{aligned}$	ortho-F para-F meta-F
$\begin{aligned} & \left.8 b\left[\mathrm{Hf}_{\mathrm{f}}^{3} \mathrm{H}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCM} \mathrm{eCH}{ }_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -129.4\left(d, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=22.6\right) ;-132.4\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=22.6\right) ;-132,-133.6 \\ & \quad(\mathrm{~m}, 1 \mathrm{~F}, 3 \mathrm{~F}) \\ & -160.5,-161(\mathrm{~m}, 2 \mathrm{~F}, 1 \mathrm{~F}) \\ & -164.2,-165.3,-165.9(\mathrm{~m}, 1 \mathrm{~F}, 2 \mathrm{~F}, 3 \mathrm{~F}) \end{aligned}$	ortho-F para-F meta- F
$\begin{aligned} & 9 \mathrm{a}\left[\mathrm{Zr}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CM} \text { eCHCH} \mathrm{CH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\left[^{\mathrm{H}} \mathrm{H} \text { 8 }\right] \text { toluene, }-40^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & -133.1(\text { br s, } 6 \text { F }) \\ & -158.8(b r s, 3 \text { F) } \\ & -164.2(b r ~ s, ~ 6 ~ F) ~ \end{aligned}$	ortho-F para-F meta-F
9b [$\left.\mathrm{Hf}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCHCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right]$ ($\left[^{2} \mathrm{H}_{8}\right.$]toluene, $-20^{\circ} \mathrm{C}$)	$\begin{aligned} & -132.6(\mathrm{br} \mathrm{~s}, 6 \mathrm{~F}) \\ & -158.7\left(\mathrm{t}, 3 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=19.7\right) \\ & -164.2(\mathrm{br} \mathrm{~s}, 6 \mathrm{~F}) \end{aligned}$	ortho-F para-F meta-F
$\begin{aligned} & 10\left[\mathrm{Zr}_{\mathrm{r}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{3}\right\} \mathrm{Cp}^{\prime \prime}\right]}^{\left(\left[{ }^{2} \mathrm{H}_{8}\right] \text { oluene, }-60^{\circ} \mathrm{C}\right)}\right. \end{aligned}$	$\begin{aligned} & -131.2,-132.9,-135.1(\mathrm{vbr} \mathrm{~s}, 1 \mathrm{~F}, 4 \mathrm{~F}, 1 \mathrm{~F}) \\ & -158.9(\mathrm{vbr} \mathrm{~s}, 3 \mathrm{~F}) \\ & -164.3(\mathrm{vbr} \mathrm{~s}, 6 \mathrm{~F}) \end{aligned}$	ortho-F para-F meta-F
11A, 11B $\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CHCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\} \mathrm{Cp}^{\prime \prime}\right]$ ($\left[^{2} \mathrm{H}_{8}\right.$]toluene, $-40^{\circ} \mathrm{C}$)	$\begin{aligned} & -114.1(\mathrm{vbr} \mathrm{~s}, 2 \mathrm{~F}) ;-130.1\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=19.7\right) ;-130.6,-169.9 \\ & \quad(\mathrm{br} 5,1 \mathrm{~F} \text { each) } \\ & -149.3(\mathrm{br} 5,1 \mathrm{~F}) ;-150.7\left(\mathrm{t}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=21.1\right) ;-153.6\left(\mathrm{t}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=19.7\right) \\ & -156.2,-159.5(\mathrm{br} \mathrm{~s}, 1 \mathrm{~F} \text { each); }-161.2(\mathrm{~m}, 4 \mathrm{~F}) \end{aligned}$	ortho-F para-F meta-F
	$\begin{aligned} & -118.7\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=25.3\right) ;-129.4(\mathrm{br} \mathrm{~s}, 1 \mathrm{~F}) ;-131.4(\mathrm{~d}, 2 \mathrm{~F}, \\ & \left.\mathrm{J}_{\mathrm{FF}}=16.9\right) ;-184.1(\mathrm{br} \mathrm{~s}, 1 \mathrm{~F}) \\ & -151.6,-155.3\left(\mathrm{t}, 1 \mathrm{~F} \text { each, } \mathrm{J}_{\mathrm{FF}}=19.7\right) ;-152.2\left(\mathrm{t}, 1 \mathrm{~F}, \mathrm{~J}_{\mathrm{FF}}=21.1\right) \\ & -157.1(\mathrm{vbr} \mathrm{~s}, 1 \mathrm{~F}) ;-160.5,-162.2(\mathrm{~m}, 2 \mathrm{~F} \text { each) and } 1 \mathrm{FF} \text { overlapping } \\ & \text { with m-F of 11A } \end{aligned}$	ortho-F para-F meta-F
$\begin{aligned} & \text { 12a }\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\mathrm{CH}_{2} \mathrm{CM} \text { eCHCHB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\} \mathrm{Cp}^{\prime \prime}\right] \\ & \left(\left[\left[^{2} \mathrm{H}_{8}\right] \text { toluene, }-20^{\circ} \mathrm{C}\right)\right. \end{aligned}$	$\begin{aligned} & -106,-123(\mathrm{vbr} \mathrm{~s}, 1 \mathrm{~F} \text { each }) ;-130,-130.4,-168(\mathrm{br} \mathrm{~s}, 2 \mathrm{~F}, 1 \mathrm{~F}, 1 \mathrm{~F}) \\ & -149,-152.9(\mathrm{br} \mathrm{~s}, 1 \mathrm{~F} \text { each }) ;-150.7(\mathrm{t}, 1 \mathrm{~F}, \mathrm{~J} \text { ff }=19.1) \\ & -156,-158(\mathrm{vbr} \mathrm{~s}, 1 \mathrm{~F} \text { each); }-160(\mathrm{br} \mathrm{~s}, 4 \mathrm{~F}) \end{aligned}$	ortho-F para-F meta-F

* All shifts are in ppm and J values in Hz .

Fig. 1 Crystal structure of complex 5a, showing the atomic numbering scheme (H atoms omitted for clarity). Ellipsoids are drawn at 40\% probability

The co-ordination geometry about M is essentially square pyramidal with an apical η^{5} - $\mathrm{C} p^{\prime \prime}$ ligand in which the η^{3}-allyl and the η^{4}-butadiene ligand occupy the basal positions both oriented in the supine configuration with respect to $\mathrm{Cp}^{\prime \prime}$. This contrasts with the prone conformations adopted by both the allyl and the diene ligands in $\left[\mathrm{Hf}\left(1,2,3-\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{H}_{2}\right)\left(1,2-\mathrm{Me}_{2} \mathrm{C}_{4}{ }^{-}\right.\right.$ $\left.\left.\mathrm{H}_{4}\right) \mathrm{Cp}\right]^{8 \mathrm{a}}$ The $\mathrm{C}-\mathrm{C}$ bond distances in the allyl ligand in $5 \mathrm{5a}$ are slightly shorter than in the parent compound $\left[\mathrm{Zr}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right.$ -$\left.\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{C} p\right][1.388(6)$ vs. $1.440(8) \AA] .{ }^{14} \mathrm{~T}$ he bond length distribution within the dieneligand, in particular the short C(7)-C (8) bond, is in keeping with the σ^{2}, π-metallacyclopent- 3 -ene char-
acter of the $\mathrm{C}_{4} \mathrm{M}$ unit. The distances from the metal centre to the diene methylene carbon atoms are in the normal range for $\mathrm{M}-\mathrm{C} \quad \sigma$-bonds, with the $\mathrm{Hf}-\mathrm{C}(6)$ and $\mathrm{Hf}-\mathrm{C}(9)$ bonds being slightly shorter. ${ }^{6,8,15}$ The diene methylene carbons are much closer to the metal than the internal diene carbons $C(7)$ and $\mathrm{C}(8)$, a further indication for the 'folded envelope' metallacyclopentane structure of this ligand. The distance difference $\Delta \mathrm{d}=\frac{1}{2}[\mathrm{~d}\{\mathrm{M}-\mathrm{C}(6)\}+\mathrm{d}\{\mathrm{M}-\mathrm{C}(9)\}]-\frac{1}{2}[\mathrm{~d}\{\mathrm{M}-\mathrm{C}(7)\}-\mathrm{d}\{\mathrm{M}-\mathrm{C}(8)\}]$ $=0.189 \AA$ is much longer than in predominantly η^{4}-bonded diene complexes. ${ }^{16}$

C ationic species

Treatment of a toluene solution of $\left[\mathrm{Hf}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\eta^{4}-\mathrm{CH}_{2}-\right.\right.$ $\left.\mathrm{CM} \mathrm{eCMeCH})_{2}\right) \mathrm{Cp} p^{\prime \prime} 5$ b with 1 equivalent of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ at $-78^{\circ} \mathrm{C}$ leads to a colour change from orange to pale yellow. The compound $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ attacks exclusively one of the terminal carbons of the diene ligand, to give the zwitterionic hafnium bis(allyl) complex $\left[\mathrm{Hf}^{+}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCM} \mathrm{eCH} \mathrm{B}^{-}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right]$ $\mathbf{8 b}$ (Scheme 3). The reaction is analogous to that of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{6}\right)_{3}$ with 5 a to give 8 a which was the subject of a preliminary communication. ${ }^{17}$

Complex $\mathbf{8 b}$ is chiral and shows seven ${ }^{1} \mathrm{H}$ resonances (Table 1) in the allylic region (five from the $\mathrm{C}_{3} \mathrm{H}_{5}$ ligand and two from the dienyl unit) together with two broadened doublets for the $\mathrm{CH}_{2}-\mathrm{B}$ moiety which appear at an unusually high field, $\delta-0.51$ and -1.39 , suggestive of agostic $\mathrm{CH} \cdots \mathrm{Hf}$ interactions; this bonding mode was confirmed by the single crystal X-ray structure of $\mathbf{8 b}$ (see below). The single ${ }^{11} \mathrm{~B}$ NM R resonance at $\delta-13$ confirms the formation of a triarylborate. The ${ }^{19} \mathrm{~F}$ NMR (Table 2) at $-10^{\circ} \mathrm{C}$ shows three different resonances in the ortho-F region, an indication of a significant barrier of rotation around the $\mathrm{B}-\mathrm{CH}_{2}$ bond, while free rotation around the $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$ bonds is still possible. This contrasts with the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ group in the analogous unsubstituted butadiene complex 10 (below) which is still freely rotating at $-40^{\circ} \mathrm{C}$. Evidently the steric hindrance provided by the diene-methyl substituents plays an important role in the solution dynamics of these complexes, a facet that is also relevant to the decom-

Table 3 Crystal data for compounds 5a, 5b and 8b

Table 4 Selected interatomic distances (\AA) and angles between interatomic vectors (${ }^{\circ}$) for complexes $\mathbf{5 a}$ [$\mathrm{M}=\mathrm{Zr}$] and $\mathbf{5 b}$ [$\mathrm{M}=\mathrm{H}$ f] with estimated standard deviations (es.d.s) in parentheses

	$\mathbf{5 a}$	$\mathbf{5 b}$
M-C(1)	$2.537(3)$	$2.505(5)$
M-C(2)	$2.546(3)$	$2.521(5)$
M-C(3)	$2.522(3)$	$2.511(5)$
M-C(4)	$2.541(3)$	$2.516(5)$
M-C(5)	$2.528(3)$	$2.506(5)$
M-C(6)	$2.312(3)$	$2.271(5)$
M-C(7)	$2.497(3)$	$2.496(5)$
M-C(8)	$2.500(3)$	$2.510(5)$
M-C(9)	$2.308(3)$	$2.264(5)$
M-C(10)	$2.435(4)$	$2.452(6)$
M-C(11)	$2.469(3)$	$2.442(5)$
M-C(12)	$2.475(4)$	$2.409(6)$
C(6)-C(7)	$1.443(5)$	$1.448(8)$
C(7)-C(8)	$1.387(5)$	$1.388(7)$
C(7)-C(71)	$1.517(5)$	$1.504(7)$
C(8)-C(9)	$1.444(5)$	$1.477(7)$
C(8)-C(81)	$1.504(5)$	$1.493(8)$
C(10)-C(11)	$1.389(6)$	$1.368(9)$
C(11)-C(12)	$1.388(6)$	$1.386(10)$
C(7)-C(6)-H (6a)	$118(2)$	$122(4)$
C(7)-C(6)-H (6b)	$119(2)$	$111(3)$
H(6a)-C(6)-H (6b)	$112(3)$	$111(5)$
C(8)-C(7)-C(6)	$120.6(3)$	$120.7(5)$
C(7)-C(8)-C(9)	$119.9(3)$	$118.3(5)$
C(8)-C(9)-H(9a)	$115(3)$	$127(4)$
C(8)-C(9)-H (9b)	$113(2)$	$116(4)$
H (9a)-C(9)-H(9b)	$115(3)$	$98(5)$
H (10a)-C(10)-H (10b)	$117(3)$	$107(5)$
C(12)-C(11)-C(10)	$123.0(4)$	$123.6(6)$
H (12a)-C(12)-H (12b)	$119(3)$	$114(5)$

8b $M=H f ; R^{1}=R^{2}=M e$
9a $M=Z r ; R^{1}=H, R^{2}=M e$
9b. $M=H f ; R^{1}=H, R^{2}=M e$
Scheme 3 (i) B $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, toluene
position reactions of these compounds (see below). A highfield ${ }^{19}$ F NM R chemical shift of one of the ortho-F signals that might indicate a metal $\cdots 0$-F co-ordination is not observed. By contrast, the co-ordinated ortho-F in $\left[\mathrm{Zr}_{2} \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~B}\right.$ $\left.\left(C_{6} F_{5}\right)_{3}\right\} \mathrm{Cp}_{2}$] experiences an upfield shift of ca. 80 ppm to $\delta-213.2{ }^{18}$
The reaction of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ with the isoprene complexes $6 \mathbf{a}$ gives the corresponding zwitterionic complexes 9a as a yellow microcrystalline solids in high yield. The analogous hafnium complex 9 b was generated in solution, in essentially quantitative yield (by NM R spectroscopy). The spectroscopic data of these compounds are very similar to those of $\mathbf{8} \mathbf{b}$. Formation of a triarylborate is indicated by the ${ }^{11} \mathrm{~B} \mathrm{~N} M \mathrm{R}$ singlet at ca. $\delta-12$, and the high-field shift of the ${ }^{1} \mathrm{H}$ NMR resonance for the $\mathrm{CH}_{2}-\mathrm{B}$ moiety, $\delta-1.05$ and -1.72 for 9 a and -0.85 and -1.78 for $\mathbf{9 b}$, again shows agostic $\mathrm{CH} \cdots \mathrm{M}$ interactions. At ca. $-30^{\circ} \mathrm{C}$, the ${ }^{19} \mathrm{~F}$ N M R spectra show only one resonance for the ortho-F atoms, without evidence for $M \cdots F$ bonding.

11B

Scheme 4 (i) $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, toluene, $-60^{\circ} \mathrm{C}$; (ii) $-60^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, but-2-ene

A ttack by $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ on the isoprene ligand could, in principle, occur on C^{1} or C^{4}, to give rise to two stereoisomers. H owever, only one single isomer is actually formed, and $B\left(C_{6} F_{5}\right)_{3}$ attacks exclusively the less hindered CH_{2} terminus. Diagnostic for this stereochemistry is, for example, the coupling between the $\mathrm{CH}_{2}-\mathrm{B}$ moiety and the neighbouring proton of the $=\mathrm{CH}$ group of the isoprene ligand.

These zwitterionic complexes are very air sensitive but thermally quite stable in the solid state. They are readily isolable and can be stored at room temperature for months. The solubility is very dependent on the degree of substitution of the diene, e.g. whereas $\mathbf{8 b}$ is soluble in aromatic solvents $9 \mathrm{a}, \mathbf{9 b}$ are only sparingly soluble. In solution $\mathbf{8 a}$ and $\mathbf{8 b}$ decompose slowly, over a period of days, to give a mixture of unknown compounds. The complexes 9 are less stable than 8.

The reaction of the unsubstituted butadiene complex 7 with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ is more complex. M onitoring the reaction by N M R spectroscopy at $-60^{\circ} \mathrm{C}$ shows that as in the previous cases a zwitterionic complex 10 is formed which is structurally analogous to 8 and 9 . Even at this low temperature, the reaction is accompanied by the formation of two decomposition products. One isomer, 11C, is formed initially, but with increasing temperature a second isomer becomes dominant. The reaction is accompanied by the formation of but-2-ene. Warming solutions of 10 to room temperature leads to complete conversion to 11. C ooling this solution to $-80^{\circ} \mathrm{C}$ shows that 11 consists of three isomers: isomer 11C already mentioned, and isomers 11A and 11B which above $-60^{\circ} \mathrm{C}$ interconvert rapidly on the N M R time-scale (Scheme 4).

Each of these compounds is chiral and highly fluxional and possesses three different $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. Compared to 10 , the ${ }^{11} \mathrm{~B}$ NM R signal for 11 is high-field shifted by ca. 55 ppm to $\delta+43$,
indicative of the transformation of a four-co-ordinate borato group into a three-co-ordinate boryl substituent. \ddagger Evidently, 10 decomposes cleanly under $\mathrm{C}-\mathrm{H}$ activation and but-2-ene elimination with concomitant migration of a $\mathrm{C}_{6} \mathrm{~F}_{5}$ substituent from boron to zirconium (Scheme 4).
The nature of the products formed and the fluxionality they exhibit are conveniently elucidated using variable-temperature ${ }^{19} \mathrm{~F} N M R$ spectroscopy. The ortho-F atoms of the $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}$ group are observed at relatively high field, well separated from other 0-F signals, at $\delta-114$ to -119 . The isomers 11A and 11B are most probably prone and supine diene conformers which interconvert via a ring-flipping process ${ }^{20}$ with a low activation barrier which is slow only at $-80^{\circ} \mathrm{C}$. The diene moiety in 11C adopts a different configuration, approximately perpendicular to the cyclopentadienyl ring, as seen in the crystallographically characterised $\mathrm{C}_{5} \mathrm{M}_{5}$ analogue $\left[\mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\right.$ Cp*] which shows quite similar spectroscopic properties. ${ }^{17}$ There is apparently no interchange of \mathbf{C} with \mathbf{A} and \mathbf{B}. Isomer C does of course also undergo a ring-flipping motion, though in this case this produces the enantiomer 11C ' and hence is not detected spectroscopically.
In all three isomers one of the two $B-C_{6} F_{5}$ groups rotates freely. One o-F atom of the second $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$ group is coordinated to the metal centre, as seen from the ${ }^{19} \mathrm{~F}$ N M R signals at $\delta-170(\mathbf{1 1 A} / \mathrm{B})$ and -184 (11C) (Table 2). This $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$ substituent shows hindered rotation which becomes slow at
\ddagger The ${ }^{{ }^{11} B}$ NMR chemical shift of $\delta 43$ suggests some double bond character of the $\mathrm{CH}-\mathrm{B}$ bond, comparable to π contributions present in $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{BOEt}(\delta 43.1)$ and $\mathrm{Li}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{BPr}_{2}{ }_{2}\right)(\delta 40)$, whereas higher shifts are observed where such interactions are absent, as in $\left[\mathrm{TiCl}_{3}\left\{\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~B}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\right] .{ }^{19}$

Scheme 5 (i) Room temperature, 20 h , -propene
$-60^{\circ} \mathrm{C}$ and the signals for $\mathrm{F}_{\mathrm{a}} \mathrm{F}_{\mathrm{b}}, \mathrm{F}_{\mathrm{c}}$ and F_{d} (Scheme 4) are resolved. Similar hindered rotation and slow exchange of F_{a} and F_{b} is observed for the $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand in 11A and 11B, whereas in the sterically less encumbered isomer 11C this group rotates freely.
In view of the general lack of reactivity of the $\mathrm{B}-\mathrm{C}$ bond in $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ towards electrophiles, the $\mathrm{C}_{6} \mathrm{~F}_{5}$ migration to the electrophilic zirconium centre at temperatures of $-60^{\circ} \mathrm{C}$ and below seems unusually facile and is evidently the response to the very specific steric conditions in the case of $\mathbf{1 0}$. Even a slight increase in steric hindrance of the diene, as in the isoprene complexes 9 , significantly raises the barrier for this rearrangement. Thus toluene solutions of 9a decompose only at much higher temperatures ($\tau_{2} \approx 3 \mathrm{~h}$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene at $25^{\circ} \mathrm{C}$), via a similar $\alpha-\mathrm{H}$ elimination with formation of propene and the product 12a (Scheme 5). The same decomposition process is observed for $\mathbf{9 b}$ to give 12b, but although the hafnium complex is more stable and the decomposition is slower, it is not as clean and gives a mixture of products, either because it is not selective or because 12b decomposes further to as yet unknown compounds.

The formation of 12a is among other things readily seen in the ${ }^{13} \mathrm{C}$ NMR spectrum where the signal at $\delta 25$ for the sp^{3} $\mathrm{CH}_{2} \mathrm{~B}$ is replaced by one at ca. $\delta 97$ for into an $\mathrm{sp}^{2}-\mathrm{CHB}$, with $\mathrm{J}_{\mathrm{CH}}=140 \mathrm{~Hz}$. At ambient temperature the ${ }^{19} \mathrm{~F}$ N M R spectrum of 12a shows three inequivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. The $\mathrm{C}_{6} \mathrm{~F}_{5}$ group bound to zirconium shows again o-F resonances at relatively high field; at $-20^{\circ} \mathrm{C}^{\circ} \mathrm{F}_{\mathrm{a}}$ and F_{a} ' are resolved and occur at $\delta-106$ and -123 . For 12a, the rotation of the $\mathrm{Zr}^{-\mathrm{C}_{6} \mathrm{~F}_{5} \text { and one }}$ $B-C_{6} F_{5}$ groups becomes completely 'frozen out' on the NMR time-scale below $-20^{\circ} \mathrm{C}$, and one o-F signal of the $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$ group is now found at low field, $\delta-168$, indicating orthofluorine co-ordination to zirconium. The presence of the methyl substituent in the isoprene ligand of 12a has evidently led to a significant increase of the rotational barriers compared with the butadiene complex 11.

In contrast to 11, compound 12a forms only two isomers of type \mathbf{A} and \mathbf{B} which are well resolved at $-60^{\circ} \mathrm{C}$. The activation barrier for the interchange, estimated from the coalescence of the isoprene $-M$ e signal, is $\Delta \mathrm{G}^{\ddagger}(233 \mathrm{~K})=47.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, compared to $\Delta G^{\ddagger}(213 \mathrm{~K})=37.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for 11. A structure of type \mathbf{C} is not found in the case of 12a, possibly because this conformation would lead to unfavourable steric interactions between the isoprene-methyl group and the $\mathrm{Cp} \mathrm{\prime} \mathrm{\prime}$ ligand.

The fluxional processes in the case of 12a are conveniently followed by ${ }^{19} \mathrm{~F}$ NMR and are illustrated in Fig. 2. Cooling to 253 K allows three (broad) ortho- F signals for $\mathrm{F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}$ and F_{c} to be distinguished. At this temperature interconversion of \mathbf{A} and B is still fast. On further cooling the presence of two isomers begins to be detectable and leads to two well resolved sets of

Fig. 2 Stacked plot of the variable-temperature ${ }^{19} \mathrm{~F}$ NMR of complex 12a, showing the region for the $0-\mathrm{F}$ atoms of the $\mathrm{Zr}-\mathrm{C}_{6} \mathrm{~F}_{5}\left(\mathrm{~F}_{\mathrm{a}}, \mathrm{F}_{\mathrm{b}}\right)$ and the co-ordinated $B-C_{6} F_{5}$ groups. The signal for F_{d} (cf. Scheme 5) is close to those of the freely rotating $\mathrm{B}-\mathrm{C}_{6} \mathrm{~F}_{5}$ substituent and has been omitted for clarity

Fig. 3 Crystal structure of complex $\mathbf{8 b}$, showing the atomic numbering scheme. Ellipsoids are drawn at 40\% probability
signals, (F_{a}, F_{b} and F_{c}, for one, $F_{a}{ }^{\prime}, F_{b}{ }^{\prime}$ and $F_{c^{\prime}}$ for the other isomer; the assignment to \mathbf{A} and \mathbf{B} is arbitrary). Similar behaviour is observed for the $m-F$ signals which are however in a more crowded part of the spectrum (as is the signal for F_{d}).

C rystal structure of 8b

The structure of $\mathbf{8 b} \cdot 0.5$ toluene was confirmed by a singlecrystal X-ray diffraction study. Crystals were obtained by recrystallization from toluene at $-20^{\circ} \mathrm{C}$. The structure is shown in Fig. 3. Important bond lengths and angles are collected in Table 5.

Table 5 Selected bond distances (\AA) and angles between interatomic vectors (${ }^{\circ}$) for complex $\mathbf{8 b}$ with es.d.s in parentheses

$\mathrm{Hf}-\mathrm{C}(6)$	2.279(4)	$\mathrm{Hf}-\mathrm{C}(9)$	2.411(3)
Hf-C(10)	2.417(4)	$\mathrm{Hf}-\mathrm{C}(12)$	2.442(4)
Hf-C(11)	2.458(3)	Hf - C (3)	2.474(3)
$\mathrm{Hf}-\mathrm{C}(8)$	2.477(3)	Hf - C (4)	2.480(3)
Hf - C (1)	2.491(3)	$\mathrm{Hf}-\mathrm{C}(5)$	2.503(3)
$\mathrm{Hf}-\mathrm{C}(2)$	2.506(3)	$\mathrm{Hf}-\mathrm{C}(7)$	2.522(3)
Hf-H (9a)	2.33(3)	$\mathrm{Hf}-\mathrm{H}$ (9b)	2.26(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.437(5)	$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{a})$	0.88(4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~b})$	0.93(4)	C (7)-C(8)	$1.388(5)$
$\mathrm{C}(7)-\mathrm{C}(71)$	1.518(5)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.511(5)
$\mathrm{C}(8)-\mathrm{C}(81)$	$1.515(5)$	$\mathrm{C}(9)-\mathrm{B}(1)$	1.703(5)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	0.96(4)	$\mathrm{C}(9)-\mathrm{H}$ (95b)	0.81(4)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.406(6)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.384(6)
$\mathrm{B}(1)-\mathrm{C}(111)$	1.643(5)	$\mathrm{B}(1)-\mathrm{C}(131)$	1.657(5)
$\mathrm{B}(1)-\mathrm{C}(121)$	1.661(5)		
$\mathrm{C}(6)-\mathrm{Hf}-\mathrm{C}(9)$	77.51(13)	$\mathrm{C}(6)-\mathrm{Hf}-\mathrm{C}(10)$	91.51(14)
$\mathrm{C}(9)-\mathrm{Hf}-\mathrm{C}(10)$	131.39(13)	$\mathrm{C}(6)-\mathrm{Hf}-\mathrm{C}(12)$	134.32(14)
$\mathrm{C}(9)-\mathrm{Hf}-\mathrm{C}(12)$	94.25(13)	$\mathrm{C}(10)-\mathrm{Hf}-\mathrm{C}(12)$	60.52(14)
$\mathrm{C}(6)-\mathrm{Hf}-\mathrm{C}(3)$	112.91(12)	$\mathrm{C}(9)-\mathrm{Hf}-\mathrm{C}(3)$	88.53(11)
$\mathrm{C}(10)-\mathrm{Hf}-\mathrm{C}(3)$	137.94(12)	$\mathrm{C}(12)-\mathrm{Hf}-\mathrm{C}(3)$	111.67(13)
$\mathrm{C}(11)-\mathrm{Hf}-\mathrm{C}(3)$	141.82(12)		
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Hf}$	82.1(2)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{a})$	117(2)
Hf-C(6)-H (6a)	125(2)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~b})$	118(2)
H f - $\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~b})$	98(2)	$\mathrm{H}(6 \mathrm{a})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~b})$	113(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	121.0(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(71)$	121.7(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(71)$	116.5(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	121.8(3)
C (7)-C (8)-C (81)	122.1(3)	C (9)-C (8)-C (81)	115.8(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{B}(1)$	116.3(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{Hf}$	74.4(2)
B (1)-C(9)-Hf	166.5(2)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	110(2)
$\mathrm{B}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	108(2)	Hf(1)-C(9)-H (9a)	74(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}$ (9b)	111(3)	$\mathrm{B}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	98(3)
H f - C (9)-H (9b)	69(3)	$\mathrm{H}(9 \mathrm{a})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	113(3)
C(12)-C(11)-C(10)	122.7(4)		
$\mathrm{C}(111)-\mathrm{B}(1)-\mathrm{C}(131)$	116.3(3)	$\mathrm{C}(111)-\mathrm{B}(1)-\mathrm{C}(121)$	111.9(3)
$\mathrm{C}(131)-\mathrm{B}(1)-\mathrm{C}(121)$	101.0(3)	$\mathrm{C}(111)-\mathrm{B}(1)-\mathrm{C}(9)$	101.4(3)
$\mathrm{C}(131)-\mathrm{B}(1)-\mathrm{C}(9)$	114.6(3)	$\mathrm{C}(121)-\mathrm{B}(1)-\mathrm{C}(9)$	112.3(3)

The compound is the first example of a structurally characterised complex of the type $\left[\mathrm{CpHf}\left(\eta^{3} \text {-allyl }\right)_{2}\right]^{+}$. The coordination around the metal atom is very close to the neutral precursor, with approximately square-pyramidal geometry and the $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$ and $\eta^{3}-\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCM} \mathrm{eCH}{ }_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ligands occupying basal positions in supine conformations. The presence of two SiM e_{3} substituents and the $B\left(C_{6} F_{5}\right)_{3}$ unit ensures a very crowded ligand sphere, as shown by the orientation of the SiM e_{3} groups away from $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. The $\eta^{3}-\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCM} \mathrm{eCH}{ }_{2} \mathrm{~B}$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ moiety has a syn conformation, which reflects its formation from the metallacyclopentene 'envelope' structure of $\mathbf{5 b}$. By contrast, in the related bis(cyclopentadiene) complex $\left[\mathrm{Zr}\left\{\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}_{2}\right.$] the allylic ligand adopts an anti arrangement. In our case no intra or inter-molecular M ...F interactions are observed.

The most significant feature in the structure of $\mathbf{8 b}$ is the $\mathrm{Hf}-\mathrm{CH}_{2}-\mathrm{B}$ moiety. The $\mathrm{Hf}-\mathrm{C}-\mathrm{B}$ arrangement is almost linear [angle 166.5(2) ${ }^{\circ}$], with a $\mathrm{Hf}-\mathrm{C}$ distance at $2.411(3) \AA$, and is comparable to related methyl-bridged zirconium systems, for example $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{M}_{2}-1,2\right)_{2} \mathrm{ZrMe}\left(\mu-\mathrm{Me} \text { e) } \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{21}[\mathrm{Zr}-\mathrm{C}-\mathrm{B}\right.$ $\left.161.8(2)^{\circ}\right], \quad\left[\mathrm{Cp}^{\prime \prime}{ }_{2} \mathrm{ZrMe}(\mu-\mathrm{M} \mathrm{e}) \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{22} \quad\left[170.5(3)^{\circ}\right] \quad$ and $\left[\mathrm{CpZr}\left\{\eta^{2}-\mathrm{PhC}\left(\mathrm{N} \mathrm{SiMe}_{3}\right)_{2}\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mu-\mathrm{Me} \text { e) } \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{23} \quad\left[166.0(8)^{\circ}\right]\right.$. Thehydrogens of thebridging methylenegroup werelocated and show relatively close contacts to the hafnium atom, with H f-H distances of $2.33(3)$ and $2.26(3) \AA$. A similar stabilisation of the Lewis-acidic metal centre through agostic $\mathrm{M} \cdots \mathrm{H}$ bonds to two of the $\mu-\mathrm{CH}_{3}$ hydrogens is found in $\left[\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Me} \mathrm{e}_{2}-1,2\right)_{2} \mathrm{ZrM} \mathrm{e}(\mu-\right.$ $\left.\mathrm{Me)} B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]$, with $\mathrm{Zr} \cdots \mathrm{H}$ of 2.25 (3) and 2.30 (3) \AA, while the metal-hydrogen distances in the more crowded [$\mathrm{Cp}{ }^{\prime \prime}{ }_{2} \mathrm{ZrM} \mathrm{e}(\mu$ $\mathrm{Me)} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$] are significantly longer [2.47(3) and 2.44(3) \AA].

The $\mathrm{C}-\mathrm{C}$ distances in the $\mathrm{C}_{\mathbf{4}}$ ligand of $\mathbf{8 b}$ are comparable to those in $\mathbf{5}$ b. H owever, the $\mathrm{Hf}-\mathrm{C}$ bond lengths to the diene CH_{2} carbons are significantly different: $\mathrm{Hf}-\mathrm{C}(6)$ is a short 2.279(4) \AA, very similar to that in $\mathbf{5 b}$ and comparable to the $\mathrm{Hf}-\mathrm{CH}_{3}$ distances in the $\left[\mathrm{HfM} \mathrm{e}_{2} \mathrm{Cp}^{\prime \prime}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\right)\right]^{+}$cation $\left[2.245(7) \AA\right.$], ${ }^{59}$ while the bond length to the bridging carbon $\mathrm{C}(9)$ is substantially longer, $2.411(3) \AA$. For comparison, the $\mathrm{Hf}-\mathrm{CH}_{3}$ bond distances in $\left[\mathrm{HfMe}_{2} \mathrm{Cp}_{2}\right]$ are 2.318(8) and 2.382(7) $\AA .^{24} \mathrm{In}$ agreement with a bis(allylic) structure of the zwitterion, the $C(8)-C(9)$ bond length is elongated from $1.477(7) \AA$ in the metallacyclopentene $\mathbf{5 b}$ to $1.511(5) \AA$ in $\mathbf{8 b}$ and approaches the value of a $\mathrm{C}-\mathrm{C}$ single bond. The bond lengths between the hafnium atom and the cyclopentadienyl carbons are essentially identical to those found in $\mathbf{5 b}$.

E thene polymerisation

The combination of G roup 4 metal alkyls with cation generating agents, such as $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ or $\mathrm{E}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right] \quad\left(\mathrm{E}=\mathrm{CPh}_{3}\right.$ or NHMe $e_{2} \mathrm{Ph}$) affords highly efficient methylaluminoxane-free alkene polymerisation catalysts. ${ }^{1}$ Diene and allyl complexes have so far not been used in this context, with few exceptions. Erker and co-workers ${ }^{18 a}$ showed that $\left[\mathrm{C}_{2} \mathrm{Zr}\left\{\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~B}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\}\right]$, obtained from $\left[\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, polymerises ethene with good activity, and Devore et al. ${ }^{25}$ employed $\mathrm{Me}_{2} \mathrm{Si}\left(\mathrm{C}_{5} \mathrm{M}_{4}\right)\left(\mathrm{NBu}^{\mathrm{t}}\right) \mathrm{Ti}($ diene $)-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ mixtures for the copolymerisation of ethene with oct-1-ene, without identifying the nature of the active species. In view of the high activity of monocyclopentadienyl complexes such as $\left[T i M e_{3}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)\right]$ $B\left(C_{6} F_{5}\right)_{3}$ for the polymerisation of ethene and propene, even at very low temperatures where bis(cyclopentadienyl) complexes are no longer appreciably active, ${ }^{26}$ we became interested in the polymerisation activity of diene monocyclopentadienyl complexes. The results are collected in Table 6.
M ixtures of $\mathbf{5 a}$ or $\mathbf{5 b}$ with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{\mathbf{3}}$ in toluene under 1 bar ethenegivelinear polyethene of relatively high molecular weight. The activities are good but not exceptional. This may in part be the result of the crowded ligand sphere, and in part due to the need for an η^{3}-allyl to rearrange to η^{1} before alkene insertion into the $\mathrm{M}-\mathrm{C}$ bond and polymer chain growth can occur, a process that is likely to increase the activation barrier for the first insertion step. The polymer molecular weight distributions are comparable to those of metallocene catalysts at low temperatures but broaden significantly with increasing temperature, possibly due to the formation of more than one active species. I soprene and particularly butadiene complexes are less active since in these cases the formation of deactivation products such as $\mathbf{1 1}$ and $\mathbf{1 2}$ becomes significant at temperatures $<0^{\circ} \mathrm{C}$.
Whereas $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ or $\mathrm{CPh}_{3}{ }^{+}$react with metallocene dialkyls [$M R_{2} C p_{2}$] to give identical active species $\left[C p_{2} M R\right]^{+}$, this is obviously not the case with diene complexes [CpM X (diene)] which afford products with diene- $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ or diene- CPh_{3} ligands, respectively. Consequently, rather different catalytic behaviour may be expected. In our case mixtures of $\mathbf{5 a}$ or $\mathbf{5 b}$ and $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ show increased productivity and, in some cases, significantly higher molecular weight (up to $\mathrm{M}_{\mathrm{w}}=1.3 \times$ 10^{6}) but with broader polydispersities. U ptake of propene under these conditions was not detected.§

Conclusion

Zirconium and hafnium diene monocyclopentadienyl complexes $\left[M\left(\eta^{3}\right.\right.$-allyl) $\left(\eta^{4}\right.$-diene) $\left.\mathrm{Cp}^{\prime \prime}\right]$ are readily activated by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ or $\mathrm{CPh}_{3}{ }^{+}$to give the cationic bis(allyl) complexes of the type $\left[\mathrm{M}\left(\eta^{3} \text {-allyl) }{ }_{2} \mathrm{Cp}\right]^{+}\right.$which catalyse the polymerisation of ethene. The zwitterionic 14-electron complexes [$M\left(\eta^{3}\right.$-allyl) $\left\{\eta^{3}\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{CRCRCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right]$ are isolable and stabilised by the
§M ixtures of $\left[\mathrm{Hf}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{C} p^{*}\right]$ and $\left[\mathrm{CPh}_{3}\right]\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ oligomerise propene ${ }^{27}$

Table 6 Ethene polymerisations with complexes $\mathbf{5 a}$ and $\mathbf{5} \mathbf{b}^{\text {a }}$

Catalyst	Activator $^{\mathbf{b}}$	$\mathrm{T} /{ }^{\circ} \mathrm{C}$	$\mathrm{t} / \mathrm{min}$	Polymer yield $/ \mathrm{g}$	Productivity ${ }^{\mathbf{c}}$	$\mathrm{M}_{\mathbf{w}}$	$\mathrm{M}_{\mathbf{w}} / \mathrm{M}_{\mathbf{n}}$
5a	I	0	3.5	0.144	98.7	201	3.5
5a	I	20	5	0.132	63.3	181	4.7
5a	I	60	10	0.190	45.6	77.3	7.6
5a	II	0	10	0.284	68.1	1230	68
5a	II	20	5	0.138	66.2	1060	27
5b	I	20	4	0.201	120.6	115	5.7
5b	I	60	10	0.062	15	316	17
5b	II	0	10	0.163	39.1	312	6.5
5b	II	20	10	0.114	27	247	8.5

${ }^{\text {a }}$ Conditions: $25 \mu \mathrm{~mol}$ of catalyst, $25 \mu \mathrm{~mol}$ of activator, $20 \mathrm{~cm}^{3}$ of toluene, ethene 1 bar. ${ }^{\mathrm{b}} \mathbf{I}, \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} ; \mathbf{I I},\left[\mathrm{CPh}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$. ${ }^{\mathrm{c}}$ In $10^{\mathbf{3}} \mathrm{g}$ polyethene (mol M) ${ }^{-1} \mathrm{~h}^{-1}$.

Table 7 A nalytical data of zirconium and hafnium diene and dienyl complexes

			A nalysis* (\%)		
Complex	Colour	Y ield (\%)	C	H	Cl
1a $\left[\mathrm{ZrCl}\left(\mathrm{M} \mathrm{e}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Cp}^{\prime \prime}\right]$	Violet	58	48.9 (48.8)	7.8 (7.5)	8.6 (8.5)
1b [$\left.\mathrm{HfCl}\left(\mathrm{M} \mathrm{e}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Cp}^{\prime \prime}\right]$	Orange	81	40.1 (40.4)	6.4 (6.2)	7.1 (7.0)
2a $\left[\mathrm{ZrCl}\left(\mathrm{MeC}_{4} \mathrm{H}_{5}\right) \mathrm{Cp}^{\prime \prime}\right]$	Violet	72	47.1 (47.6)	6.8 (7.2)	8.7 (8.5)
$\mathbf{2 b}\left[\mathrm{HfCl}\left(\mathrm{M} \mathrm{CC}_{4} \mathrm{H}_{5}\right) \mathrm{Cp}^{\prime \prime}\right]$	Orange	80	39.5 (39.1)	6.2 (6.0)	7.2 (7.2)
$3\left[\mathrm{Zr}\left(\mathrm{M} \mathrm{e}_{2} \mathrm{C}_{4} \mathrm{H}_{3}\right) \mathrm{Cp}^{\prime \prime}\right]_{2}$	D eep red	38	53.2 (53.4)	7.8 (7.9)	
$5 \mathrm{a}\left[\mathrm{Zr}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{M} \mathrm{e}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Cp}^{\prime \prime}\right]$	Red	83	56.1 (56.7)	9.3 (8.6)	
5b [$\left.\mathrm{Hf}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{M}_{2} \mathrm{C}_{4} \mathrm{H}_{4}\right) \mathrm{Cp}^{\prime \prime}\right]$	Yellow	76	47.3 (46.9)	7.4 (7.1)	
$6 \mathrm{a}\left[\mathrm{Zr}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{M} \mathrm{eC}_{4} \mathrm{H}_{5}\right) \mathrm{Cp}^{\prime \prime}\right]$	Red	80	52.6 (52.7)	8.3 (8.4)	
6b $\left[\mathrm{Hf}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{M} \mathrm{eC}_{4} \mathrm{H}_{5}\right) \mathrm{C} p^{\prime \prime}\right]$	Yellow	83	45.3 (45.9)	7.2 (6.9)	
$7\left[\mathrm{Zr}\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Cp}^{\prime \prime}\right]$	Purple	87	52.3 (52.7)	8.2 (8.4)	
8b [$\left.\mathrm{Hf}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{M} \mathrm{e}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp} \mathrm{\prime} \mathrm{\prime}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	Pale yellow	83	47.0 (46.7)	3.6 (3.8)	
$9 \mathrm{a}\left[\mathrm{Zr}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{MeC}_{4} \mathrm{H}_{5} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{Cp}^{\prime \prime}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$	Yellow	89	52.8 (52.1)	4.4 (4.1)	
12a $\left[\mathrm{Zr}\left\{\mathrm{M} \mathrm{eC} 4_{4} \mathrm{H}_{4} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cp}{ }^{\prime \prime}\right]$	Red	92	46.5 (46.4)	3.3 (3.2)	

* Required values given in parentheses.
agostically bonded $\mathrm{CH}_{2} \mathrm{~B}$ moiety. Their stability and propensity towards $\mathrm{C}-\mathrm{H}$ activation and decomposition depends crucially on the steric requirements of the ligand sphere and particularly on the substituents R. Unlike related bis(cyclopentadienyl) complexes, these monocyclopentadienyl compounds are able to undergo facile $\mathrm{C}-\mathrm{H}$ activation and rearrangement reactions which provide a novel catalyst deactivation pathway. The sensitivity of these reactions to mainly steric ligand influences illustrates the importance of detailed reactivity studies for the understanding of activity, lifetime and ligand design requirements in potential catalysts.

Experimental

G eneral procedures

All manipulations were performed under dried nitrogen using Schlenk techniques. Solvents were distilled under nitrogen from sodium (toluene), sodium benzophenone (diethyl ether, thf), sodium-potassium alloy (light petroleum, b.p. $40-60^{\circ} \mathrm{C}$) and $\mathrm{CaH}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Deuteriated solvents were stored over activated $4 \AA$ molecular sieves and degassed by several freeze-thaw cycles. The compounds [$\mathrm{MCl}_{3} \mathrm{C} \mathrm{p}^{\prime \prime}$] ($\mathrm{M}=\mathrm{Zr}$ or Hf) were prepared according to published procedures; ${ }^{28} 2,3$-dimethylbuta1,3 -diene and isoprene were purchased from Aldrich and distilled immediately before use. The N M R spectra were recorded on a Bruker D PX 300 spectrometer; ${ }^{1} \mathrm{H}$ spectra are referenced to the residual solvent protons, ${ }^{19} \mathrm{~F}(282.2 \mathrm{MHz})$ is relative to $\mathrm{CFCl}_{3}{ }^{11} \mathrm{~B}(96.2 \mathrm{M} \mathrm{Hz})$ relative to $\mathrm{BF}_{3} \cdot 0 \mathrm{Et}_{2}$. Elemental analyses are given in Table 7.

A solution of $\left[\mathrm{ZrCl}_{3} \mathrm{Cp}^{\prime \prime}\right]$ ($6 \mathrm{~g}, 14.7 \mathrm{mmol}$) and 2,3-dimethylbuta-1,3-diene ($1.8 \mathrm{~cm}^{3}, 15.9 \mathrm{mmol}$) in thf ($80 \mathrm{~cm}^{3}$) was stirred with $1 \% \mathrm{Na}-\mathrm{Hg}(0.74 \mathrm{~g}, 32.3 \mathrm{mmol})$ at room temperature for 16 h . The solvent was removed and the brown-purple
residue extracted several times with hot light petroleum. Concentration and cooling of this solution to $-20^{\circ} \mathrm{C}$ gave 1 a as a violet solid ($3.58 \mathrm{~g}, 58 \%$).

Preparation of [$\left.\mathrm{HfCl}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Me}_{2}-\mathbf{2}, \mathbf{3}\right) \mathrm{C} \mathbf{p}{ }^{\prime \prime}\right] \mathbf{1 b}$

A solution of $\left[\mathrm{H} \mathrm{fCl}_{3} \mathrm{Cp}^{\prime \prime}\right](7.5,15.1 \mathrm{mmol})$ and 2,3 -dimethyl-buta-1,3-diene ($1.8 \mathrm{~cm}^{3}, 16 \mathrm{mmol}$) in thf ($80 \mathrm{~cm}^{3}$) was stirred with $1 \% \mathrm{Na}-\mathrm{Hg}(0.77 \mathrm{~g}, 33.4 \mathrm{mmol})$ at room temperature for 16 h . The thf was pumped off and the resultant orange solid extracted with toluene. Concentration and cooling at $-20^{\circ} \mathrm{C}$ gave an orange solid $\mathbf{1 b}$ ($6.51 \mathrm{~g}, 81 \%$).

Following the method described for $\mathbf{1 a}, \mathbf{2 a}$ and $\mathbf{2 b}$ were prepared as violet and orange solids in 72 and 80% yield, respectively.

Preparation of $\left[\mathbf{Z r}\left(\mu-\boldsymbol{\eta}^{1}: \boldsymbol{\eta}^{4}-\mathbf{C}_{4} \mathbf{H}_{3} \mathrm{Me}_{2} \mathbf{- 2 , 3}\right) \mathrm{C}^{\mathbf{\prime \prime}} \mathbf{l}_{\mathbf{2}} \mathbf{3}\right.$

A solution of $\left[\mathrm{ZrCl}_{3} \mathrm{Cp}^{\prime \prime}\right]$ ($3 \mathrm{~g}, 7.4 \mathrm{mmol}$) and 2,3-dimethylbuta-1,3-diene ($0.84 \mathrm{~cm}^{3}, 7.4 \mathrm{mmol}$) in thf ($50 \mathrm{~cm}^{3}$) was stirred at room temperature with a two-fold excess of $1 \% \mathrm{Na}-\mathrm{Hg}(86 \mathrm{~g}$, 37 mmol) for 24 h . A fter removal of the solvent the dark brown oil was extracted with light petroleum ($3 \times 20 \mathrm{~cm}^{3}$). The filtrate was concentrated to $10 \mathrm{~cm}^{3}$ and cooled at $-20^{\circ} \mathrm{C}$ to give 3 as a deep red solid ($2.1 \mathrm{~g}, 38 \%$).

To a suspension of $\mathbf{1 a}(1.0 \mathrm{~g}, 2.4 \mathrm{mmol})$ in diethyl ether at $-78^{\circ} \mathrm{C}$ was added M eLi in diethyl ether ($1.4 \mathrm{~m}, 1.8 \mathrm{~cm}^{3}, 2.4$ $\mathrm{mmol})$. The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ and stirred for 3 h . A fter removal of the solvent the residue was extracted with light petroleum ($30 \mathrm{~cm}^{3}$). The resultant red solution was taken to dryness to give a red solid, $4 \mathrm{a}(0.77 \mathrm{~g}$, 81\%).

Preparation of $\left[\mathrm{H} \mathrm{fM} \mathrm{e}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{M} \mathrm{e} \mathbf{e}_{2}\right.\right.$-2,3) $\left.\mathrm{Cp}^{\mathbf{\prime \prime}}\right]$

Following the method given for $\mathbf{4 a}, \mathbf{4 b}$ was prepared giving a spectroscopically pure yellow oil.

Preparation of $\left[\mathrm{Zr}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{M} \mathrm{e}_{2}-\mathbf{2}, \mathbf{3}\right) \mathrm{Cp}^{\prime \prime}\right] 5 \mathrm{a}$

Into a solution of $\mathbf{1 a}(2.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ in thf $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was injected $2.4 \mathrm{~cm}^{3}$ of a 2.0 m solution of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{M} \mathrm{gCl}$ in diethyl ether. The cooling bath was removed and the reaction mixture was allowed to warm to room temperature and stirred for 3 h . The solvent was removed and the residue extracted with light petroleum ($3 \times 20 \mathrm{~cm}^{3}$). The filtrate was concentrated and left to crystallize at $-20^{\circ} \mathrm{C}$ to give a red crystalline material 5 a ($1.68 \mathrm{~g}, 83 \%$).

The other allyl complexes $\mathbf{5 b}, \mathbf{6 a}$ and $\mathbf{6 b}$ were prepared similarly. A ll of these compounds were obtained in 76-83\% yields and gave satisfactory elemental analyses.

Preparation of $\left[\mathrm{Zr}\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right) \mathrm{Cp}^{\mathbf{\prime \prime}}\right] \mathbf{7}$

A solution of $\left[\mathrm{ZrCl}_{3} \mathrm{Cp}^{\prime \prime}\right](3.85 \mathrm{~g}, 9.3 \mathrm{mmol})$ in $30 \mathrm{~cm}^{3}$ of thf was added to a solution of $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{M} \mathrm{gCl}\left(0.13 \mathrm{~m}, 218 \mathrm{~cm}^{3}, 28.4\right.$ mmol) in thf at $0^{\circ} \mathrm{C}$. The solution was allowed to warm to room temperature and stirred for 5 h . A fter removal of the thf, the residue was extracted with light petroleum $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined extracts were concentrated and cooled overnight to $-20^{\circ} \mathrm{C}$ to give 7 ($3.32 \mathrm{~g}, 87 \%$).

Preparation of $\left[\mathrm{Hf}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCMeCH} \mathrm{C}_{2} \mathrm{~B}\right.\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{C} \mathrm{p}^{\prime \prime} \mathbf{]} \mathbf{b}$

To a solution of $5 \mathbf{b}(1.5 \mathrm{~g}, 2.93 \mathrm{mmol})$ in toluene $\left(50 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(1.51 \mathrm{~g}, 2.93 \mathrm{mmol})$ in toluene (20 cm^{3}). The reaction mixture was stirred at this temperature for 1 h and then allowed to warm to ambient temperature. The colour changed instantaneously from orange to pale yellow. Concentration to $20 \mathrm{~cm}^{3}$ followed by cooling to $-20^{\circ} \mathrm{C}$ afforded 8 b as a pale yellow crystalline solid ($2.6 \mathrm{~g}, 83 \%$). ${ }^{11} \mathrm{~B}$ $\left\{{ }^{1} \mathrm{H}\right\}$ N M R $\left(-30^{\circ} \mathrm{C}\right): \delta-13.0$.

Preparation of $\left[\mathrm{Zr}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CM} \mathrm{eCHCH} \mathrm{H}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{C} \mathrm{p}^{\prime \prime}\right]$ 9a

A solution of $B\left(C_{6} F_{5}\right)_{3}(2.5 \mathrm{~g}, 4.9 \mathrm{mmol})$ in toluene ($30 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ was added to a solution of $6 \mathrm{a}(2 \mathrm{~g}, 4.88 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$, also at $-20^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 2 h during which a large quantity of microcrystalline yellow solid precipitated. Concentration and cooling to $-20^{\circ} \mathrm{C}$ afforded $9 \mathrm{a}(4.4 \mathrm{~g}, 89 \%) .{ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N}$ M R $\left(-40^{\circ} \mathrm{C}\right): \delta-12.1$.

Generation of $\left[\mathrm{Hf}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CMeCHCH}{ }_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{C} \mathrm{p}^{\prime \prime}\right]$ 9b
To a solution of $\mathbf{6 b}(40 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene (0.3 cm^{3}) at $-40^{\circ} \mathrm{C}$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(42 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene ($0.3 \mathrm{~cm}^{3}$). The colour changed instantaneously from bright to pale yellow. The conversion is 100% by ${ }^{1} \mathrm{H}$ N M R spectroscopy. ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(0^{\circ} \mathrm{C}\right): \delta-12.5$.

Generation of $\left[\mathrm{Zr}\left(\eta^{3}-\mathrm{C}_{4} \mathrm{H}_{7}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHCH}_{2} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right\} \mathrm{C}^{\prime \prime}\right]$

 10This compound is thermally sensitive and was therefore generated in solution and characterised spectroscopically. To a solution of $7(42 \mathrm{mg}, 0.1 \mathrm{mmol})$ in [${ }^{2} \mathrm{H}$ 8 f toluene $\left(0.3 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(52 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene (0.2 cm^{3}). The orange solution contained 10 , besides $11 . ~^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NM R ($-60^{\circ} \mathrm{C}$): $\delta-12.6$.

Generation of [$\left.\mathbf{C} \mathrm{p}^{\prime \prime} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathbf{C H C H C H B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\right] 11$

The compound was generated in situ from $\mathbf{7}$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(1$ equivalent) by warming a solution in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene from $-60^{\circ} \mathrm{C}$
to room temperature. The conversion is 100% by ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectroscopy. ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}\left(20^{\circ} \mathrm{C}\right): \delta 43.0$.

An orange solution of $9 \mathrm{a}(2.3 \mathrm{~g}, 2.27 \mathrm{mmol})$ in toluene (100 cm^{3}) was stirred at ambient temperature for 20 h during which time the solution turned red. The solvent was removed under vacuum and the residue extracted with diethyl ether ($50 \mathrm{~cm}^{3}$). Concentration to $10 \mathrm{~cm}^{3}$ and cooling to $-20^{\circ} \mathrm{C}$ yielded 12a as a red microcrystalline solid ($1.85 \mathrm{~g}, 92 \%$). ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ $\left(20^{\circ} \mathrm{C}\right): \delta 41$.

Preparation of $\left[\mathrm{Cp}^{\prime \prime} \mathrm{Hf}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\eta^{3}-\mathrm{CH}_{2} \mathbf{C M e C H C H B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}\right] \mathbf{1 2 b}$

This compound was generated in situ and characterised spectroscopically. To a solution of $\mathbf{6 b}(40 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene $\left(0.3 \mathrm{~cm}^{3}\right)$ at $-40^{\circ} \mathrm{C}$ was added $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(42 \mathrm{mg}$, 0.08 mmol) in $\left[^{2} \mathrm{H}_{8}\right.$]toluene ($0.3 \mathrm{~cm}^{3}$). The solution was left at room temperature for 5 h . The final orange solution contained 12b, besides further unknown decomposition compounds. ${ }^{11} \mathrm{~B}$ $\left\{^{1} \mathrm{H}\right\} \mathrm{N}$ M R $\left(20^{\circ} \mathrm{C}\right): \delta 44$.

G eneral procedure for ethene polymerisation

A magnetically stirred $50 \mathrm{~cm}^{3}$ reactor was flame dried in vacuo prior to being charged with $20 \mathrm{~cm}^{3}$ of dry and degassed toluene. The solvent was heated to the desired polymerisation temperature and allowed to saturate with ethene at 1 bar of pressure. Aliquots of toluene solutions of the organometallic catalyst were injected, followed by a solution of activator in toluene. There was an immediate colour change, accompanied by monomer consumption. The pressure was maintained at 1 bar throughout. The reaction was terminated by injecting $2 \mathrm{~cm}^{3}$ of methanol. The contents of the reactor were poured into methanol; the collected polymer was washed with methanol and dried at $60-80^{\circ} \mathrm{C}$ for 24 h . M olecular weight determinations and NMR analysis were carried out on 'as-prepared' polymer samples without fractionation.

X-R ay crystallography

Data for $\mathbf{5 a}$ and $\mathbf{5 b}$ were collected at 150 K on a Delft Instruments FA ST TV-area detector diffractometer positioned at the window of a rotating anode generator and following previously described procedures. ${ }^{29}$ Data for $\mathbf{8 b}$ were collected at 160 K on a Stoe STADI4 diffractometer operating in the $\omega-\theta$ scan mode. All three data sets were collected using graphitemonochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$. Full details of crystal data, data collection and structure refinement are given in Table 3.
The structures of all three compounds were solved by standard heavy-atom methods using SH ELXS $86 .{ }^{30}$ The asymmetric unit of $\mathbf{8 b}$ was found to contain a half molecule of toluene disordered across the centre of symmetry at ($1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$). Refinement, by full-matrix least squares on F^{2} using SHELXL $93,{ }^{31}$ was essentially the same for all three compounds. Non-hydrogen atoms (including those of the toluene solvate molecule of $\mathbf{8 b}$) were refined with anisotropic displacement parameters. Hydrogen atoms were constrained to idealised positions using a riding model (with free rotation for methyl groups) with the exception of the hydrogen atoms attached to atoms $C(6), C(9), C(10)$ and $C(12)$ of all three complexes which were all located on Fourier-difference syntheses and freely refined with isotropic displacement parameters.
CCDC reference number 186/605.

Acknowledgements

We thank Professor M. B. Hursthouse (EPSRC National Crystallographic Service, U niversity of Wales, Cardiff) for the collection of two X-ray data sets. G. J. P. thanks the Spanish M inistry for Education and Science for a research fellowship.

References

1 M. Bochmann, J. Chem. Soc., Dalton Trans., 1996, 255; H. H Brintzinger, D. Fischer, R. M ülhaupt, B. R ieger and R. Waymouth, A ngew. Chem., 1995, 107, 1255; A ngew. Chem., Int. E d. E ngl., 1995, 34, 1143.
2 J. A. M. Canich, Eur. Pat., 420 436, 1990; Exxon, E ur. Pat., 672688 1991; J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. K night and S. Lai (to Dow), Eur. Pat., 416 815, 1990; J. A. M. Canich, US Pat., 5026 798, 1993; H. W. Turner, G. G. H latky and J. A . M . Canich (to Exxon), WO 9319103, 1993; W. A. Herrmann and M. J. A. M orawietz, J. Organomet. Chem., 1994, 482, 169; D. W. Carpenetti, L. K loppenburg, J. T. K upec and J. L. Petersen, Organometallics, 1996, 15, 1572; J. C. C hung and H. Lu, J. Polym. Sci., Part A : Polym. Chem., 1997, 35, 575.
3 N. Ishihara, T. Seimiya, M. K uramoto and M. U oi, M acromolecules, 1986, 19, 2464; C. Pellecchia, P. Longo, A. Proto and A. Zambelli, M akromol. Chem. Rapid Commun., 1992, 13, 265 C. Pellecchia, D. Pappalardo, L. Oliva and A. Zambelli, J. Am. C hem. Soc., 1995, 117, 6593; A. G rassi, A . Zambelli and F. Laschi, Organometallics, 1996, 15, 480; T. E. Ready, R. O. Day, J. C. W. Chien and M. D. Rausch, M acromolecules, 1993, 26, 5822; H. Kucht, A. Kucht, J. C. W. Chien and M. D. Rausch, Appl. Organomet. Chem., 1994, 8, 393; R. Quyoum, Q. Wang, M.J. Tudoret and M. C. Baird, J. A m. Chem. Soc., 1994, 116, 6435.
4 C. Pellecchia, A. Proto, P. Longo and A. Zambelli, M akromol. Chem. R apid Commun., 1992, 13, 277; C. Pellecchia, A. Proto and A. Zambelli, M acromolecules, 1992, 25, 4450; M. Bochmann, S. J. Lancaster, M . B. Hursthouse and K. M. A. M alik, Organometallics, 1994, 13, 2235; D. Jeremic, Q. Wang, R. Quyoum and M. C. Baird, J. Organomet. Chem., 1995, 497, 143; Q. Wang, R. Quyoum, D.J. Gills, M . J. Tudoret, D. Jeremic, B. K. H unter and M . C. Baird, Organometallics, 1996, 15, 693.
5 (a) M. Bochmann and S. J. Lancaster, Organometallics, 1993, 12, 633; (b) M. Bochmann and S. J. L ancaster, M akromol. Chem. R apid Commun., 1993, 14, 807; (c) M. Bochmann and S. J. Lancaster, A ngew. Chem., Int. Ed. Engl., 1994, 33, 1634; (d) M. Bochmann, T. Cuenca and D. T. H ardy, J. O rganomet. Chem., 1994, 484, C10; (e) M. Bochmann and S. J. Lancaster, J. Organomet. Chem. 1995, 497, 55; (f) M. Bochmann, O. B. Robinson, S. J. Lancaster, M . B. H ursthouse and S. J. Coles, Organometallics, 1995, 14, 2456; (g) M. Bochmann, S. J. Lancaster and O. B. Robinson, J. Chem. Soc., C hem. Commun., 1995, 2081.
6 J. Blenkers, B. Hessen, F. van Bolhuis, A. J. Wagner and J. H. Teuben, Organometallics, 1987, 6, 459.

7 G. Jimenez Pindado, M. Thornton-Pett and M. Bochmann, Chem. Commun., 1997, 609.
8 (a) T. J. Prins, B. H. H auger, P. J. Vance, M . E. Wemple, D. A . K ort, J. P. O'Brien, M. E. Silver and J. C. H uffman, Organometallics, 1991, 10, 979; (b) J. Blenkers, H. J. De Liefde M eijer and J. H. Teuben, Recl. Trav. Chim. Pays-B as, 1980, 99, 216; J. Organomet. Chem., 1981, 218, 383; (c) A. Z wijnenburg, H. O. van O ven, C. J. G roenenboom and H. J. de Liefde M eijer, J. Organomet. Chem., 1975, 94, 23
9 A. J. Pearson, A ust. J. Chem., 1977, 30, 407; P. Caddy, M . G reen E. O'Brien, L. E. Smart and P. Woodward, J. Chem. Soc., D alton Trans., 1980, 962; P. W. Jolly, R. M ynott and R . Salz, J. O rganomet Chem., 1980, 184, C 49.

10 B. Hessen and J. H. Teuben, J. Organomet. Chem., 1988, 358, 135; A. N akamura and K. M ashima, J. Organomet. C hem., 1995, 500, 261.

11 H. Yamamoto, H. Yasuda, K. Tatsumi, K. Lee, A. Nakamura, J. Chen, Y. K ai and N. K asai, Organometallics, 1989, 8, 105; G. Erker, J. Wicher, K . Engel and C. K rüger, C hem. Ber., 1982, 115, 3300.

12 P. W. Jolly and R. M ynott, A dv. Organomet. Chem., 1981, 19, 257; G. Erker, K. Berg, R. Benn and G. Schroth, Chem. Ber., 1985, 118, 1383.

13 N. Walker and D. Stuart, A cta C rystallogr., Sect. A, 1983, 39, 158.
14 G. Erker, K. Berg, C. K rüger, G. M üller, K. A ngermund, R. Benn and G. Schroth, A ngew. C hem., Int. Ed. E ngl., 1984, 6, 455.
15 C. K rüger, G. M üller, G. Erker, U. D orf and K . Engel, Organometallics, 1985, 4, 215.
16 O. S. M ills and G. Robinson, Proc. Chem. Soc. L ondon, 1960, 421; M. Brookhart, K. Cox, F. G. N. Cloke, J. C. Green, M. L. H. G reen, P. M. Hare, J. Bashkin, A. E. Derome and P. D. Grebenik, J. Chem. Soc., D alton Trans., 1985, 423.

17 G. Jiménez Pindado, M. Thornton-Pett, M. Bouwkamp, A. M eetsma, B. H essen and M. Bochmann, A ngew. Chem., in the press.
18 (a) B. Temme, G. Erker, J. K arl, H. Luftmann, R. Fröhlich and S. K otila, A ngew. Chem., Int. Ed. Engl., 1995, 34, 1755; (b) B. Temme, J. K arl and G. Erker, C hem. E ur. J., 1996, 2, 919.

19 R. Duchateau, S. J. L ancaster, M. Thornton-Pett and M. Bochmann, unpublished work; G. E. Herberich and A. Fischer, O rganometallics, 1996, 15, 58.
20 C. Sontag, H. Berke, C. Santer and G. Erker, H elv. Chim. Acta, 1989, 72, 1679; H. Y asuda, Y. K ajihara, K . M ashima, K . N agasuna, K . Lee and A . N akamura, O rganometallics, 1982, 1, 388.
21 X. Y ang, C. L. Stern and T. J. M arks, J. A m. Chem. Soc., 1991, 113, 3623; 1994, 116, 10015.
22 M . Bochmann, S. J. L ancaster, M . B. H ursthouse and K . M . A bdul M alik, O rganometallics, 1994, 13, 2235.
23 R. Gómez, M. L. H. G reen and J. L. H aggott, J. C hem. Soc., D alton Trans., 1996, 939.
24 F. R. Fronczek, E. C. Baker, P. R. Sharp, K . N. Raymond, H. G. A It and M. D. R ausch, Inorg. Chem., 1976, 15, 2284.
25 D. D. D evore, F. J. Timmers, D. L. H asha, R. K. Rosen, T. J. M arks, P. A. D eck and C. L. Stern, O rganometallics, 1995, 14, 3132.

26 R. Quyoum, Q. Wang, M. J. Tudoret and M. C. Baird, J. Am. C hem. Soc., 1994, 116, 6435; J. Saßmannshausen, M . Bochmann, J. R ösch and D. Lilge, J. Organomet. Chem., in the press.
27 B. Hessen and H. van der H eijden, J. Organomet. C hem., 1997, 534, 237.

28 C. H. Winter, X. X. Zhou, D. A. D obbs and M. J. Heeg, Organometallics, 1991, 10, 210.
29 A. D arr, S. R . Drake, M . B. H ursthouse and K . M . A . M alik, Inorg. Chem., 1993, 32, 5704.
30 G. M. Sheldrick, A cta C rystallogr., Sect. A, 1990, 46, 467.
31 G. M. Sheldrick, SH ELXL 93, program for the refinement of crystal structures, U niversity of G öttingen, 1993.

Received 9th M ay 1997; Paper 7/03192K

[^0]: \dagger In memoriam Geoffrey Wilkinson, an inspired and inspiring chemist.

